含锆、硅有机陶瓷前驱体的制备及其陶瓷化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:PREPARATION AND CERAMIZATION OF ZIRCONIUM AND SILICON CONTAINING ORGANIC PRECURSORS
  • 作者:杨明泽 ; 周权 ; 彭峥强 ; 宋宁 ; 倪礼忠
  • 英文作者:YANG Ming-ze;ZHOU Quan;PENG Zheng-qiang;SONG Ning;Key Laboratory of Special Functional Polymer Materials and Related Technology,Ministry of Education,School of Materials Science and Engineering,East China University of Science and Technology;
  • 关键词:陶瓷前驱体 ; 后聚合 ; 陶瓷化
  • 英文关键词:precursor;;post polymerization;;ceramization
  • 中文刊名:BLGF
  • 英文刊名:Fiber Reinforced Plastics/Composites
  • 机构:华东理工大学材料科学与工程学院特种功能高分子材料及相关技术教育部重点实验室;
  • 出版日期:2019-03-25
  • 出版单位:玻璃钢/复合材料
  • 年:2019
  • 期:No.302
  • 基金:国家自然科学基金资助项目(51573044)
  • 语种:中文;
  • 页:BLGF201903011
  • 页数:6
  • CN:03
  • ISSN:11-2168/TU
  • 分类号:45-50
摘要
以正丙醇锆、乙酰丙酮,1,2-丙二醇为原料,制备主链为-Zr-O-CH2-CH-,侧链含有不饱和基团的含锆聚合物(ZMP)并作为锆源。将主链为-Si H、-C≡C-的硅炔树脂(PTSA)作为硅源。将二者以质量比2∶5进行复配,制得陶瓷前驱体(PMS)。采用FT-IR和NMR对ZMP结构进行表征,EDS分析了ZMP的元素组成;利用原位红外分别探讨了PMS的固化行为,运用TGA研究了PMS的耐热性能; TGA测试表明,陶瓷前驱体具有良好的耐热及热稳定性能,在氮气和空气气氛下1000℃时的质量保留率分别为90. 24%和88. 53%。通过XRD、SEM、TEM和Raman研究了PMS的陶瓷化演变。陶瓷化演变结果表明,PMS在1600℃下的陶瓷转化率高达57. 4%,且陶瓷产物中含高结晶度的Zr C、Si C晶体。
        Zirconium-containing polymer( ZMP) with a main chain of-Zr-O-CH2-CH-and an unsaturated group in the side was prepared by using zirconium n-propoxide,acetylacetone and 1,2-propanediol as raw materials of zirconium source. A silicon alkyne resin( PTSA) with a main chain of-Si H,-C≡C-was used as a silicon source. The two were reconstituted at a mass ratio of 2 ∶ 5 to obtain a ceramic precursor( PMS). The ZMP structure was characterized by FT-IR and NMR. The elemental composition of ZMP was analyzed by EDS. The curing behavior of PMS was investigated by DSC and in-situ infrared,and the heat resistance of PMS was studied by TGA.The TGA test shows that the precursor has good heat and thermal stability,and the mass retention rates at 1000 ℃under nitrogen and air atmosphere are 90. 24% and 88. 53%,respectively. The ceramization evolution of PMS was studied by XRD,SEM,TEM and Raman. The ceramization evolution results show that the ceramic conversion rate of PMS at 1600 ℃ is as high as 57. 4%,and the ceramic products contain high crystallinity Zr C and SiC crystals.
引文
[1]Paul A,Jayaseelan D D,Venugopal S,et al. UHTC composites for hypersonic applications[J]. American Ceramic Society Bulletin,2012,91(1):22-29.
    [2]Padture N P. Advanced structural ceramics in aerospace propulsion[J]. Nature Materials,2016,15(8):804.
    [3] Marschall J,Pejakovic D,Fahrenholtz W G,et al. Temperature jump phenomenon during plasmatron testing of Zr B2-Si C ultrahightemperature ceramics[J]. Journal of Thermophysics&Heat Transfer,2013,26(4):559-572.
    [4]Kim S,Szlufarska I,Morgan D. Ab initio study of point defect structures and energetics in Zr C[J]. Journal of Applied Physics,2010,107(5):163-05.
    [5]黄传进,王明存. Si C-Zr C陶瓷单组分前驱体树脂的制备与性能[J].固体火箭技术,2015(2):291-294.
    [6]Shi J M,Feng J C,Tian X Y,et al. Interfacial microstructure and mechanical property of Zr C-Si C ceramic and Ti6Al4V joint brazed with Ag CuTi alloy[J]. Journal of the European Ceramic Society,2017,37(8):2769-2778.
    [7]Cai T,Qiu W F,Liu D,et al. Synthesis of soluble poly-yne polymers containing zirconium and silicon and corresponding conversion to nanosized Zr C/Si C composite ceramics[J]. Dalton Transactions,2013,42(12):4285-4290.
    [8]Sacks M D,Wang C A,Yang Z,et al. Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors[J]. Journal of Materials Science,2004,39(19):6057-6066.
    [9]Peter Snedden,A I C,Keith Scott A,et al. Cross-linked polymerionic liquid composite materials[J]. Macromolecules,2003,36(12):4549-4556.
    [10]Juanli Y U,Wang T,Yi L V,et al. Continuous SiBN fiber reinforced nitride ceramic matrix composites fabricated by PIP I-Performance analysis of precursor and fibers[J]. Aerospace Materials&Technology,2015,3(5):19-23.
    [11]Yu Z,Yang L,Zhan J,et al. Preparation,cross-linking and ceramization of AHPCS/Cp2Zr Cl2,hybrid precursors for Si C/Zr C/C composites[J]. Journal of the European Ceramic Society,2012,32(6):1291-1298.
    [12]郭建辉,张治军.二氧化硅修饰纳米氧化锆陶瓷材料的制备及性能[J].化学研究,2012,23(2):68-72.
    [13]Zhao Y,Wang L J,Zhang G J,et al. Effect of holding time and pressure on properties of Zr B2-Si C composite fabricated by the spark plasma sintering reactive synthesis method[J]. International Journal of Refractory Metals&Hard Materials,2009,27(1):177-180.
    [14]赵光辉. Zr B2和Si C在高温低氧压下氧化的原位研究[D].浙江:浙江大学,2014.
    [15] Lv X,Yu S,Ge M,et al. Synthesis and microstructure of continuous composite ceramic fibres of Zr C/Zr B2-Si C derived from polymeric precursors[J]. Ceramics International,2016,42(7):9299-9303.
    [16]刘长青.有机含锆陶瓷前驱体的合成研究[D].西安:西北工业大学,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700