秋冬交替季节白洋淀沉积物有机质特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Organic Matter Characteristics of Sediment in Lake Baiyangdian in Autumn-Winter Alternate Season
  • 作者:胡晓明 ; 崔骏 ; 裴元生
  • 英文作者:HU Xiaoming;CUI Jun;PEI Yuansheng;Gansu Academy of Environmental Sciences;The Key Laboratory of Water and Sediment Sciences,Ministry of Education,School of Environment,Beijing Normal University;
  • 关键词:沉积物 ; 有机质 ; 光谱学特性 ; 溶解释放
  • 英文关键词:sediment;;organic matter;;spectroscopic property;;dissolution-release
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:甘肃省环境科学设计研究院;北京师范大学水沙科学教育部重点实验室;
  • 出版日期:2018-08-22 17:06
  • 出版单位:环境科学研究
  • 年:2019
  • 期:v.32;No.255
  • 基金:国家水体污染控制与治理科技重大专项(No.2018ZX07110004);; 国家自然科学基金项目(No.51579009)~~
  • 语种:中文;
  • 页:HJKX201904012
  • 页数:11
  • CN:04
  • ISSN:11-1827/X
  • 分类号:104-114
摘要
为了研究白洋淀沉积物中有机质释放对秋冬交替季节淀区水环境的影响.将白洋淀分为自然保护区、旅游区、村落密集区、淀中村区和出淀口区五部分,在20个代表性采样点采集沉积物样品,采用光谱学方法表征样品中有机质特性,并研究氮、磷的溶解释放特征.结果表明:①在自然保护区、淀中村区和出淀口区,沉积物中有机质的腐殖化和芳香化程度较高,主要为陆源可见光类腐殖酸组分(C1)、海源可见光类腐殖酸组分(C3)和紫外光类腐殖酸组分(C4);而在旅游区和村落密集区,有机质的腐殖化和芳香化程度较低,主要为类色氨酸组分(C2),表明这些区域受人为活动影响大.②紫外吸收光谱和荧光光谱参数具有很好的相关性,可用于表征沉积物中有机质特征;类色氨酸组分的荧光强度与沉积物中w(TN)和w(TP)具有良好的正相关关系,显示出同源性特征.③与以类腐殖酸为主要成分的沉积物样品相比,氮、磷更易从以类蛋白为主要成分的沉积物中释放.研究显示,秋冬交替季节白洋淀沉积物中有机质以类蛋白和类腐殖酸为主,且类蛋白具有促进共存氮、磷溶解释放的作用.
        The organic matter release from the sediments in Lake Baiyangdian is investigated,which plays an important role in maintaining the water quality of the lake in the autumn-winter alternate seasons. Twenty samples were collected from representative sites in five representative areas,including the nature reserve areas,the tourist areas,the densely populated areas,villages in the middle of the lake,and in the lake outlet areas. The spectroscopy characteristics of the organic matter in the samples were determined,and the dissolutionrelease behavior of nitrogen and phosphorus in the samples were investigated. The results showed that:( 1) The humification and aromatization of the organic matter in the sediment were relatively high in the nature reserve areas,villages in the middle of the lake and the lake outlet areas. The organic matters mainly consisted of the terrestrial visible light humic acid component( C1),marine visible light humic acid component( C3),and the UV-light humic acid component( C4). In contrast,the humification and aromatization of the organic matter were relatively low in the tourist areas and the densely populated areas,which was principally dominated by the tryptophanlike components( C2).( 2) A close relationship between UV adsorption and fluorescence spectra parameters was obtained,which could be used to identify the characteristics of the organic matter in the sediment. A significant positive correlation existed between the fluorescence intensity of C2 and the w( TN) and w( TP),presenting a homologous characteristic.( 3) A high release volume of nitrogen and phosphorus presented in the samples dominated by the protein-like substances rather than in those dominated by the humic-like substances. The results indicate that the protein-like substance and the humic-like substances as the main components exist in the sediment of the lake in the autumn-winter alternate seasons. The dissolution-release behavior of the coexistence nitrogen and phosphorus is accelerated in the presence of the protein-like substances.
引文
[1]江波,陈媛媛,肖洋,等.白洋淀湿地生态系统最终服务价值评估[J].生态学报,2017,37(8):2497-2505.JIANG Bo,CHEN Yuanyuan,XIAO Yang,et al. Evaluation of the economic value of final ecosystem services from the Baiyangdian Wetland[J].Acta Ecologica Sinica,2017,37(8):2497-2505.
    [2] YAN Shengjun,WANG Xuan,CAI Yanpeng,et al.Investigation of the spatio-temporal dynamics in landscape variations in a shallow lake based on a new tendency-pattern-service conceptual framework[J].Journal of Cleaner Production,2017,161:1074-1084.
    [3]张敏,宫兆宁,赵文吉,等.近30年来白洋淀湿地景观格局变化及其驱动机制[J].生态学报,2016,36(15):4780-4791.ZHANG Min,GONG Zhaoning,ZHAO Wenji,et al. Landscape pattern change and the driving forces in Baiyangdian Wetland from1984 to 2014[J]. Acta Ecologica Sinica,2016,36(15):4780-4791.
    [4]王亚琼,薛培英,耿丽平,等.白洋淀沉积物-沉水植物-水系统氮、磷分布特征[J].水土保持学报,2017,31(3):304-309.WANG Yaqiong,XUE Peiying,GENG Liping,et al. Distribution characteristics of nitrogen and phosphorus in sediment-submerged macrophytes-water systems of Baiyangdian Lake[J].Journal of Soil and Water Conservation,2017,31(3):304-309.
    [5] YUAN Z,JIANG S,SHENG H,et al. Human perturbation of the global phosphorus cycle:changes and consequences[J].Environmental Science&Technology,2018,52(5):2438-2450.
    [6]保定市环境保护局. 2017年11月保定市国、省控水环境质量月报[EB/OL].保定:保定市环境保护局,2017[2018-06-17].http://www. bdhb. gov. cn/eportal3/cms/jsp/site001/article. jsp?fchannelidenty=8aa7976153878d580153971e1807428e&articleId=8aa79761603af969016072eddc5d0222.heml.
    [7] FOX G A,PURVIS R A,PENN C J.Streambanks:a net source of sediment and phosphorus to streams and rivers[J]. Journal of Environmental Management,2016,181:602-614.
    [8] RYDIN E,KUMBLAD L,WULFF F,et al. Remediation of a eutrophic bay in the Baltic Sea[J]. Environmental Science&Technology,2017,51(8):4559-4566.
    [9] YANG Yan,GAO Bo,HAO Hong,et al.Nitrogen and phosphorus in sediments in China:a national-scale assessment and review[J].Science of the Total Environment,2017,576:840-849.
    [10]刘静静,董春颖,宋英琦,等.杭州西湖北里湖沉积物氮磷内源静态释放的季节变化及通量估算[J].生态学报,2012,32(24):7932-7939.LIU Jingjing,DONG Chunying,SONG Yingqi,et al. The seasonal variations of nitrogen and phosphorus release and its fluxes from the sediments of the Beili Lake in the Hangzhou West Lake[J]. Acta Ecologica Sinica,2012,32(24):7932-7939.
    [11]翁圆,苏玉萍,张玉珍,等.福建山仔水库不同季节表层沉积物内源磷负荷分析[J].湖泊科学,2014,26(6):871-878.WENG Yuan,SU Yuping,ZHANG Yuzhen,et al. Internal phosphorus loadings and fluxes of surface sediments in four seasons in Shanzi Reservoir[J]. Journal of Lake Sciences,2014,26(6):871-878.
    [12]洪志强,熊瑛,李艳,等.白洋淀沉水植物腐解释放溶解性有机物光谱特性[J].生态学报,2016,36(19):6308-6317.HONG Zhiqiang,XIONG Ying,LI Yan,et al. The spectra characterization on dissolved organic matter of submerged plant decomposition in Lake Baiyangdian[J]. Acta Ecologica Sinica,2016,36(19):6308-6317.
    [13]王敬富,陈敬安,杨永琼,等.红枫湖季节性热分层消亡期水体的理化特征[J].环境科学研究,2012,25(8):845-851.WANG Jingfu,CHEN Jingan,YANG Yongqiong,et al.Physical and chemical characteristics of water in Lake Hongfeng during the disappearance of seasonal stratification[J]. Research of Environmental Sciences,2012,25(8):845-851.
    [14]王斌,马健,王银亚,等.天山天池水体季节性分层特征[J].湖泊科学,2015,27(6):1197-1204.WANG Bin,MA Jian,WANG Yinya,et al. Seasonal characteristics of thermal stratification in Lake Tianchi of Tianshan Mountains[J].Journal of Lake Sciences,2015,27(6):1197-1204.
    [15]袁冬海,崔骏,洪志强,等.白洋淀沉水植物腐解溶解性有机物与重金属的相互作用[J].环境工程学报,2016,10(5):2184-2192.YUAN Donghai,CUI Jun,HONG Zhiqiang,et al. Interaction between dissolved organic matter released by macrophyte decomposition and heavy metal in Lake Baiyangdian[J]. Chinese Journal of Environmental Engineering,2016,10(5):2184-2192.
    [16]常利伟.白洋淀湖群的演变研究[D].长春:东北师范大学,2014.
    [17]孙添伟,陈家军,王浩,等.白洋淀流域府河干流村落非点源负荷研究[J].环境科学研究,2012,25(5):568-572.SUN Tianwei,CHEN Jiajun,WANG Hao,et al. Study on non-point source pollution loads in villages along the Fuhe River,Baiyangdian Watershed[J].Research of Environmental Sciences,2012,25(5):568-572.
    [18]张慧,席北斗,高如泰,等.白洋淀水环境容量核算及上游容量分配[J].环境工程技术学报,2012,2(4):313-318.ZHANG Hui,XI Beidou,GAO Rutai,et al. Water environmental capacity accounting and upstream capacity allocation of Baiyangdian Lake[J]. Journal of Environmental Engineering Technology,2012,2(4):313-318.
    [19]王珺,裴元生,杨志峰.营养盐对白洋淀草型富营养化的驱动与限制[J].中国环境科学,2010,30(S1):7-13.WANG Jun,PEI Yuansheng,YANG Zhifeng.Effects of nutrients on the plant type eutrophication of the Baiyangdian Lake[J]. China Environmental Science,2010,30(S1):7-13.
    [20]徐杰,何萍,王钦,等.夏季白洋淀沉水植物分布与水环境因子的关系[J].湿地科学,2013,11(4):488-494.XU Jie,HE Ping,WANG Qin,et al. Relationship between distribution of submerged macrophyte and water environment factors in Baiyangdian Lake in summer[J]. Wetland Science,2013,11(4):488-494.
    [21] OHNO T.Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science&Technology,2002,36(19):742-746.
    [22] HE W,JUNG H,LEE J H,et al. Differences in spectroscopic characteristics between dissolved and particulate organic matters in sediments:insight into distribution behavior of sediment organic matter[J].Science of the Total Environment,2016,547:1-8.
    [23] MANGALGIRI K P,TIMKO S A,GONSIOR M,et al. PARAFAC modeling of irradiation-and oxidation-induced changes in fluorescent dissolved organic matter extracted from poultry litter[J].Environmental Science&Technology,2017,51(14):8036.
    [24] LIU Shasha,ZHU Yuanrong,LIU Leizhen,et al. Cation-induced coagulation of aquatic plant-derived dissolved organic matter:investigation by EEM-PARAFAC and FT-IR spectroscopy[J].Environmental Pollution,2018,234:726-734.
    [25] LEE Y P,FUJII M,TERAO K,et al. Effect of dissolved organic matter on Fe(Ⅱ)oxidation in natural and engineered waters[J].Water Research,2016,103:160-169.
    [26] DELPLA I,RODRIGUEZ M J.Experimental disinfection by-product formation potential following rainfall events[J]. Water Research,2016,104:340-348.
    [27] WANG J,LAFRENIRE M J,LAMOUREUX S F,et al.Differences in riverine and pond water dissolved organic matter composition and sources in Canadian high arctic watersheds affected by active layer detachments[J]. Environmental Science&Technology,2018,52(3):1062-1071.
    [28] MAIZEL A C,LI J,REMUCAL C K. Relationships between dissolved organic matter composition and photochemistry in lakes of diverse trophic status[J]. Environmental Science&Technology,2017,51(17):9624-9632.
    [29] ZHANG Li,XU Kechen,WANG Shengrui,et al. Characteristics of dissolved organic nitrogen in overlying water of typical lakes of Yunnan Plateau,China[J]. Ecological Indicators,2018,84:727-737.
    [30] KORSHIN G V,LI C W,BENJAMIN M M. Monitoring the properties of natural organic matter through UV spectroscopy:a consistent theory[J].Water Research,1997,31(7):1787-1795.
    [31] KELLERMAN A M,GUILLEMETTE F,PODGORSKI D C,et al.Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems[J]. Environmental Science&Technology,2018,52(5):2538-2548.
    [32] FENG L,XU J,KANG S,et al.Chemical composition of microbederived dissolved organic matter in cryoconite in Tibetan Plateau glaciers:insights from fourier transform ion cyclotron resonance mass spectrometry analysis[J]. Environmental Science&Technology,2016,50(24):13215-13223.
    [33] PAASO N,PEURAVUORI J,LEHTONEN T,et al. Sedimentdissolved organic matter equilibrium partitioning of pentachlorophenol:the role of humic matter[J]. Environment International,2002,28(3):173-183.
    [34] SANTN C,GONZLEZ-PREZ M,OTERO X L,et al.Characterization of humic substances in salt marsh soils under sea rush(Juncus maritimus)[J]. Estuarine Coastal&Shelf Science,2008,79(3):541-548.
    [35] SANTOS L M D,SIMES M L,MELO W J D,et al.Application of chemometric methods in the evaluation of chemical and spectroscopic data on organic matter from oxisols in sewage sludge applications[J].Geoderma,2010,155(1/2):121-127.
    [36] SENESI N,D'ORAZIO V,RICCA G. Humic acids in the first generation of EUROSOILS[J]. Geoderma,2003,116(3/4):325-344.
    [37] LU Yongze,LI Na,DING Zhaowei,et al.Tracking the activity of the Anammox-DAMO process using excitation:emission matrix(EEM)fluorescence spectroscopy[J].Water Research,2017,122:624-632.
    [38] CAI Weiwei,LIU Jiaqi,ZHANG Xiangru,et al. Generation of dissolved organic matter and byproducts from activated sludge during contact with sodium hypochlorite and its implications to online chemical cleaning in MBR[J].Water Research,2016,104:44-52.
    [39] CHEN W,GUEGUEN C,SMITH D S,et al. Metal(Pb,Cd,Zn)binding to diverse organic matter samples and implications for speciation modelling[J]. Environmental Science&Technology,2018,52(7):4163-4172.
    [40] CHEN Z,LI M,WEN Q,et al. Evolution of molecular weight and fluorescence of effluent organic matter(EfOM)during oxidation processes revealed by advanced spectrographic and chromatographic tools[J].Water Research,2017,124:566-575.
    [41] XU Huacheng,GUO Laodong.Intriguing changes in molecular size and composition of dissolved organic matter induced by microbial degradation and self-assembly[J].Water Research,2018,135:187-194.
    [42] LY Q V,NGHIEM L D,SIBAG M,et al.Effects of COD/N ratio on soluble microbial products in effluent from sequencing batch reactors and subsequent membrane fouling[J]. Water Research,2018,134:13-21.
    [43] DING Q,YAMAMURA H,YONEKAWA H,et al. Differences in behaviour of three biopolymer constituents in coagulation with polyaluminium chloride:implications for the optimisation of a coagulation-membrane filtration process[J].Water Research,2018,133:255-263.
    [44] MAQBOOL T,CHO J,JIN H.Dynamic changes of dissolved organic matter in membrane bioreactors at different organic loading rates:Evidence from spectroscopic and chromatographic methods[J].Bioresource Technology,2017,234:131-139.
    [45] HE X S,XI B D,LI X,et al. Fluorescence excitation-emission matrix spectra coupled with parallel factor and regional integration analysis to characterize organic matter humification[J].Chemosphere,2013,93(9):2208-2215.
    [46] TRAGANZA E D. Fluorescence excitation and emission spectra of dissolved organic matter in sea water[J]. Bulletin of Marine Science,1969,19(4):897-904.
    [47] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry,1996,51(4):325-346.
    [48] STEDMON C A,MARKAGER S,BRO R.Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry,2003,82(3/4):239-254.
    [49] VAN HEUSDEN M C,THOMPSON F,DENNIS J,et al.Distribution and optical properties of CDOM in the Arabian Sea during the 1995 southwest monsoon[J]. Deep Sea Research PartⅡ:Topical Studies in Oceanography,1998,45(10/11):2195-2223.
    [50]冯伟莹,朱元荣,吴丰昌,等.太湖水体溶解性有机质荧光特征及其来源解析[J].环境科学学报,2016,36(2):475-482.FENG Weiying,ZHU Yuanrong,WU Fengchang,et al. The fluorescent characteristics and sources of dissolved organic matter in water of Tai Lake,China[J].Acta Scientiae Circumstantiae,2016,36(2):475-482.
    [51]熊春晖,张瑞雷,吴晓东,等.滆湖表层沉积物营养盐和重金属分布及污染评价[J].环境科学,2016,37(3):925-934.XIONG Chunhui,ZHANG Ruilei,WU Xiaodong,et al. Distribution and pollution assessment of nutrient and heavy metals in surface sediments from Lake Gehu in southern Jiangsu Province,China[J].Environmental Science,2016,37(3):925-934.
    [52]刘文,严小东,吴曼,等.基于分子量分布的生活污水荧光光谱研究[J].湖北农业科学,2016,55(4):872-876.LIU Wen, YAN Xiaodong, WU Man, et al. Fluorescence spectroscopy analysis of domestic wastewater based on molecular weight distribution[J].Hubei Agricultural Sciences,2016,55(4):872-876.
    [53]彭修强,项立辉,郭娜,等.南黄海南部海域表层沉积物重金属来源解析及风险评价[J].环境科学学报,2015,35(11):3628-3638.PENG Xiuqiang, XIANG Lihui, GUO Na, et al. Sources identification and hazardous risk delineation of heavy metals contamination in surface sediments in the southern of the South Yellow Sea[J]. Acta Scientiae Circumstantiae,2015,35(11):3628-3638.
    [54]孟睿,何连生,席北斗,等.白洋淀污染的主成分分析[J].环境科学与技术,2012(S2):100-103.MENG Rui,HE Liansheng,XI Beidou,et al. Principal component analysis of Baiyangdian Lake pollutions[J].Environmental Science&Technology(China),2012(S2):100-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700