砷污染生境下挺水植物香蒲对砷的积累与迁移特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Accumulation and Transportation of Arsenic to Wetland Plant Typha angustifolia L. in the Herbaceous Plants Grown in Arsenic-Contaminated Habitat
  • 作者:任伟 ; 倪大伟 ; 刘云根 ; 杨桂英 ; 张慧娟 ; 赵立君 ; 王妍
  • 英文作者:REN Wei;NI Dawei;LIU Yungen;YANG Guiying;ZHANG Huijuan;ZHAO Lijun;WANG Yan;College of Ecology and Soil & Water Conservation,Southwest Forestry University;Research Center of Water Science and Engineering,Southwest Forestry University;
  • 关键词: ; 香蒲 ; 物候期 ; 耐受性 ; 积累 ; 迁移
  • 英文关键词:arsenic;;Typha angustifolia L.;;phenology;;tolerance;;accumulation;;transportation
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:西南林业大学生态与水土保持学院;西南林业大学水科学与工程中心;
  • 出版日期:2018-12-19 10:01
  • 出版单位:环境科学研究
  • 年:2019
  • 期:v.32;No.256
  • 基金:国家自然科学基金项目(No.21767027,41761098);; 云南省应用基础研究计划项目(No.2018FB044)~~
  • 语种:中文;
  • 页:HJKX201905015
  • 页数:9
  • CN:05
  • ISSN:11-1827/X
  • 分类号:130-138
摘要
为探究典型湿地挺水植物香蒲(Typha angustifolia L.)不同生长阶段对As(砷)污染生境中As累积与迁移的影响,采用室内模拟方式,通过外源添加Na2HAs O4·7H2O设置不同的As污染生境,w〔As(V)〕分别为0、50、100、150、200、400 mg/kg,探析As胁迫下不同物候期(幼苗期、花果期、枯黄期)香蒲的生长发育、As累积特征及对土壤中As的提取迁移效果.结果表明:①As对挺水植物香蒲的生长产生低促高抑的作用,在w〔As(Ⅴ)〕为100~150 mg/kg处理下香蒲的生长状态显著优于其他处理;在w〔As(Ⅴ)〕为400 mg/kg污染生境下,香蒲的生长存在受害症状,但仍可完成整个生命期.不同生长阶段香蒲对As的耐受性特征存在差异,随着生育期的延长,植株对As污染反应的敏感性下降,表现出较强的耐受性,其中花果期最为突出,在w〔As(Ⅴ)〕为100 mg/kg时耐性指数最大,比0 mg/kg处理增加了54. 0%.②香蒲不同部位对As的积累特征均反映出剂量依赖效应,在幼苗期、花果期和枯黄期香蒲地上部w(As)均低于地下部,转运系数均小于1;但不同生长阶段植株富集转运水平差别较大,以花果期为最高,幼苗期次之,伴随"稀释"效应的产生,枯黄期最低.③在As污染生境下,香蒲对土壤中As的去除作用大于固定作用,其迁移效果表现为花果期>枯黄期>幼苗期,在花果期进行刈割可使其发挥最佳修复效果.研究显示,挺水植物香蒲对As具有较强的耐性,并且对As的积累与迁移在不同物候期存在差异,因此,其可作为修复As污染河湖湿地土壤的推荐性植物加以深入研究与利用.
        The accumulation and transport of arsenic(As) in typical wetland plant Typha angustifolia L. were investigated in seedling,flowering,and yellowing stages under various As stresses(0,50,100,150,200 and 400 mg/kg). The effect of As stress on plant growth and development,plant As accumulation and soil As transportation of three growth stages was examined. The results showed that:(1)Typha angustifolia L. growth was increased by low As while decreased by high As and the highest biomass production was obtained at 100-150 mg/kg As. Typha angustifolia L. showed toxic symptoms under 400 mg/kg As but can still complete its life cycle. Typha angustifolia L.in different growth stages showed different As tolerant abilities. Plant sensitivity to As stress decreased with increasing growth period,showing increased As tolerance. The greatest As tolerance was observed in flowering stage,with tolerance index being increased by 54. 0%in the 100 mg/kg As treatment compared the control.(2) The As distribution in different plant tissues was dose-dependent. Shoot As concentration was higher than the root in seedling,flowering and yellowing stages,leading to the transport coefficient<1. However,the As accumulation and transportation efficiency in plants were different in three growth stages,with the highest in flowering stage and lowest in browning stage due to the biomass dilution.(3) Arsenic removal from soil was greater than that being fixed by Typha angustifolia L. under As stresses. The As transport efficiency was in order of flowering>yellowing>seedling stage. Therefore,collecting plants in flowering stage helps the greatest restoration of As-contaminated soils and/or sediments. The results showed that the emergent plant Typha angustifolia L.has strong tolerance to As and various As accumulation and transportation abilities in different phenological stages. It's performance and mechanisms in As-contaminated wetland sediment remediation deserve further studies.
引文
[1] ZHANG Zheyun,MOON H S,MYNENI S,et al. Phosphate enhanced abiotic and biotic arsenic mobilization in the wetland rhizosphere[J].Chemosphere,2017,187:130-139.
    [2] JING He.A review of arsenic presence in China drinking water[J].Journal of Hydrology,2013,492(10):79-88.
    [3]黄维恒,包立,林健,等.沘江流域耕地土壤重金属分布及生态风险评价[J].农业环境科学学报,2017,34(5):456-465.HUANG Weiheng,BAO Li,LIN Jian,et al. Distribution and ecological risk assessment of heavy metals in arable soils in Bijiang Watershed,China[J].Journal of Agro-Environment Science,2017,34(5):456-465.
    [4]吴万富,徐艳,史德强,等.我国河流湖泊砷污染现状及除砷技术研究进展[J].环境科学与技术,2015,38(S1):190-197.WU Wanfu,XU Yan,SHI Deqiang,et al. The arsenic pollution status of the rivers and lakes in China and the research progress on arsenic removal techniques[J]. Environmental Science&Technology(China),2015,38(S1):190-197.
    [5] CHEN Guoliang,LIU Xingmei,XU Jianming,et al.Arsenic species uptake and subcellular distribution in Vallisneria natans(Lour.)Hara as influenced by aquatic p H[J]. Bulletin of Environmental Contamination and Toxicology,2014,92(4):478-482.
    [6]李梦莹,刘云根,侯磊,等.阳宗海湖滨湿地环境因素对沉积物砷赋存形态的影响及浓度水平预测[J].环境科学研究,2018,31(9):1554-1563.LI Mengying, LIU Yungen, HOU Lei, et al. Effects and concentration predictions of environmental factors on the speciation of arsenic in the sediments of Yangzonghai lakeside wetland[J].Research of Environmental Sciences,2018,31(9):1554-1563.
    [7]蔡艳洁,张恩楼,刘恩峰,等.云南阳宗海沉积物重金属污染时空特征及潜在生态风险[J].湖泊科学,2017,29(5):1121-1133.CAI Yanjie,ZHANG Enlou,LIU Enfeng,et al. Spatio-temporal characteristics of heavy metal pollution and potential ecological risk in the sediments of Lake Yangzonghai,Yunnan Province[J].Journal of Lake Sciences,2017,29(5):1121-1133.
    [8]徐艳,吴万富,史德强,等.含铁吸附、絮凝剂在水资源砷污染治理中的应用进展[J].云南民族大学学报(自然科学版),2015,24(6):453-459.XU Yan,WU Wanfu,SHI Deqiang,et al.Application of the arsenic removal by ferriferous adsorbent and coagulation and its prospects[J]. Journal of Yunnan University of Nationalities(Natural Sciences Edition),2015,24(6):453-459.
    [9] RESONGLES E,CASIOT C,FREYDIER R,et al.Persisting impact of historical mining activity to metal(Pb,Zn,Cd,Tl,Hg)and metalloid(As,Sb)enrichment in sediments of the Gardon River,Southern France[J].Science of the Total Environment,2014,481:509-521.
    [10] PIGNATTELLI S,COLZI I,BUCCIANTI A,et al.Exploring element accumulation patterns of a metal excluder plant naturally colonizing a highly contaminated soil[J]. Journal of Hazardous Materials,2012,227/228(5):362-369.
    [11] LIU Jianguo,ZHANG Wen,PENG Q U,et al. Cadmium tolerance and accumulation in fifteen wetland plant species from cadmiumpolluted water in constructed wetlands[J]. Frontiers of Environmental Science&Engineering,2016,10(2):1-8.
    [12] LIN Hai, LIU Junfei, DONG Yingbo, et al. Absorption characteristics of compound heavy metals vanadium,chromium,and cadmium in water by emergent macrophytes and its combinations[J].Environmental Science&Pollution Research,2018,25(18):1-10.
    [13]陈国梁,冯涛,陈章,等.砷在农作物中的累积及其耐受机制研究综述[J].生态环境学报,2017,26(11):1997-2002.CHEN Guoliang,FENG Tao,CHEN Zhang,et al. Research review on the mechanisms of arsenic uptake and its resistance in crops[J]. Ecology and Environment Sciences,2017,26(11):1997-2002.
    [14] CHEN Guoliang,LIU Xingmei,BROOKES P C,et al.Opportunities for phytoremediation and bioindication of arsenic contaminated water using a submerged aquatic plant:Vallisneria natans(Lour.)Hara[J].International Journal of Phytoremediation,2015,17(3):249-255.
    [15] CHATURVEDI A D,PAL D,PENTA S,et al.Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem[J].World Journal of Microbiology&Biotechnology,2015,31(10):1595-1603.
    [16]刘敏国,王士嘉,陆姣云,等.河西走廊藜麦C、N、P生态化学计量学特征对物候期的响应[J].干旱区研究,2018,35(1):192-198.LIU Minguo,WANG Shijia,LU Jiaoyun,et al.Response of C,N and P stoichiometry of Chenopodium quinoa to phenological phase in the Hexi Corridor[J].Arid Zone Research,2018,35(1):192-198.
    [17]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [18]倪大伟,王妍,刘云根,等.典型岩溶小流域不同土地利用类型土壤钙分布及形态特征[J].西南林业大学学报(自然科学),2018,38(2):83-88.NI Dawei,WANG Yan,LIU Yungen,et al. Distribution and morphological characteristics of soil calcium in different land use types in typical karst small watershed[J]. Journal of Southwest Forestry University(Natural Science),2018,38(2):83-88.
    [19]张慧娟,刘云根,侯磊,等.典型出境河流生态修复区沉积物重金属污染特征及生态风险评估[J].环境科学研究,2017,30(9):1415-1424.ZHANG Huijuan,LIU Yungen,HOU Lei,et al. Pollution characteristics and ecological risk assessment of heavy metals in sediments of a typical outbound river ecological restoration area[J]. Research of Environmental Sciences,2017,30(9):1415-1424.
    [20] WENZEL W W,KIRCHBAUMER N,PROHASKA T,et al.Arsenic fractionation in soils using an improved sequential extraction procedure[J].Analytica Chimica Acta,2001,436(2):309-323.
    [21] METWALLY A,SAFRONOVA V I,BELIMOV A A,et al.Genotypic variation of the response to cadmium toxicity in Pisum sativum L.[J]. Journal of Experimental Botany,2005,56(409):167-178.
    [22]陈俊峰,吴攀,张萌,等.香蒲对锑矿渣中Sb和As的富集特征[J].生态学杂志,2015,34(9):2645-2649.CHEN Junfeng,WU Pan,ZHANG Meng,et al. Accumulation characteristics of Sb and As in cattail growing in antimony mine tailings[J].Chinese Journal of Ecology,2015,34(9):2645-2649.
    [23] WANG Z,HOU L,LIU Y,et al.Metal contamination in a riparian wetland:distribution, fractionation and plant uptake[J].Chemosphere,2018,200:587-593.
    [24]李元,祖艳群.重金属污染生态与生态修复[M].北京:科学出版社,2016.
    [25]骆永明.镉锌污染土壤的超积累植物修复研究[M].北京:科学出版社,2015.
    [26]黄瑞卿.土壤-蔬菜系统中砷转移规律的研究[J].安徽农业科学,2017,45(27):12-16.HUANG Ruiqing.Regular pattern of arsenic transferring movement in soil-vegetable system[J]. Journal of Anhui Agricultural Sciences,2017,45(27):12-16.
    [27] LIU Xue,FENG Huayuan,FU Jingwei,et al. Arsenic-induced nutrient uptake in As-hyperaccumulator Pteris vittata and their potential role to enhance plant growth[J]. Chemosphere,2018,198:425-431.
    [28]高静湉,杜方圆,李卫平,等.黄河湿地小白河片区优势植物重金属的富集特征[J].农业环境科学学报,2016,35(11):2180-2186.GAO Jingtian,DU Fangyuan,LI Weiping,et al. Content and accumulation characteristics of heavy metals in dominant plants in Xiao Bai He Area of the Yellow River Wetland[J].Journal of AgroEnvironment Science,2016,35(11):2180-2186.
    [29] BAKER A J M,BROOKS R R,PEASE A J,et al.Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L.(Caryophyllaceae)from Zare[J]. Plant&Soil,1983,73(3):377-385.
    [30]董萌,赵运林,雷存喜,等.蒌蒿(Artemisia selengensis)对土壤中镉的胁迫反应及修复潜力研究[J].环境科学学报,2012,32(6):1473-1480.DONG Meng,ZHAO Yunlin,LEI Cunxi,et al.Growth responses and phytoremediation potential of Artemisia selengensis to Cd stress[J].Acta Scientiae Circumstantiae,2012,32(6):1473-1480.
    [31] WAN Xiaoming,LEI Mei,LIU Yingru,et al. A comparison of arsenic accumulation and tolerance among four populations of Pteris vittata,from habitats with a gradient of arsenic concentration[J].Science of the Total Environment,2013,442:143-151.
    [32]王爱云,黄姗姗,钟国锋,等.铬胁迫对3种草本植物生长及铬积累的影响[J].环境科学,2012,33(6):2028-2037.WANG Aiyun,HUANG Shanshan,ZHONG Guofeng,et al.Effect of Cr(Ⅵ)stress on growth of three herbaceous plants and their Cr uptake[J].Environmental Science,2012,33(6):2028-2037.
    [33] BLUTE N K,BRABANDER D J,HEMOND H F,et al. Arsenic sequestration by ferric iron plaque on cattail roots[J].Environmental Science&Technology,2004,38(22):6074-6077.
    [34] LIU Xue,YANG Guangmei,GUAN Dongxing,et al. Catecholatesiderophore produced by As-resistant bacterium effectively dissolved Fe As O4,and promoted Pteris vittata growth[J].Environmental Pollution,2015,206:376-381.
    [35] XU J Y,HAN Y H,CHEN Y,et al. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata[J].Chemosphere,2016,144:1233-1240.
    [36]王震宇,温胜芳,罗先香,等. 2种水生植物根际溶液磷素时空变异及有机酸分泌[J].环境科学,2009,30(8):2248-2252.WANG Zhengyu,WEN Shengfang,LUO Xianxiang,et al. In situ dynamics of phosphorus in the rhizosphere solution and organic acids exudation of two aquatic plants[J]. Environmental Science,2009,30(8):2248-2252.
    [37] CHEN Y L,HONG X Q,HE H,et al. Biosorption of Cr(VI)by Typha angustifolia:mechanism and responses to heavy metal stress[J].Bioresource Technology,2014,160(5):89-92.
    [38]谢景千,雷梅,陈同斌,等.蜈蚣草对污染土壤中As、Pb、Zn、Cu的原位去除效果[J].环境科学学报,2010,30(1):165-171.XIE Jingqian,LEI Mei,CHEN Tongbin,et al. Phytoremediation of soil co-contaminated with arsenic,lead,zinc and copper using Pteris vittata L.:a field study[J].Acta Scientiae Circumstantiae,2010,30(1):165-171.
    [39] CHEN Yingzhi,FU Shanming,WANG Jianhuang,et al.Stress effect of cadmium absorption between aloe and Solanum nigrum L.[J].Meteorological and Environmental Research,2015(3):30-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700