基于logistic曲线识别混合层高度的新方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A new method to identify mixing layer height based on logistic curve
  • 作者:朱育雷 ; 倪长健 ; 谭钦文 ; 王源程
  • 英文作者:ZHU Yu-lei;NI Chang-jian;TAN Qin-wen;WANG Yuan-cheng;College of Atmospheric Sciences, Chengdu University of Information Technology;Plateau Atmosphere and Environment Key Laboratory of Sichuan Province;Chengdu Environmental Monitoring Centre;
  • 关键词:Mie散射激光雷达 ; 大气消光系数 ; 混合层 ; logistic曲线 ; 垂直分布
  • 英文关键词:Mie scattering lidar;;atmospheric extinction coefficient;;mixing layer;;logistic curve;;vertical distribution
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:成都信息工程大学大气科学学院;高原大气与环境四川省重点实验室;成都市环境监测中心站;
  • 出版日期:2017-05-20
  • 出版单位:中国环境科学
  • 年:2017
  • 期:v.37
  • 基金:国家自然科学基金重大研究计划(9164420061)
  • 语种:中文;
  • 页:ZGHJ201705009
  • 页数:7
  • CN:05
  • ISSN:11-2201/X
  • 分类号:72-78
摘要
基于成都市2013年6月至2014年2月Mie散射激光雷达探测数据的分析表明,混合层顶附近大气消光系数自下而上均存在显著下降区、整体缓变区以及二者之间的过渡区.利用logistic曲线对上述变化特征进行拟合,通过计算该曲线曲率最大值对应的高度,据此提出识别混合层高度的新方法.该方法的设计思想符合混合层的定义,即为湍流特征不连续界面以下湍流充分发展的气层;另外,相应的计算结果不仅和探空曲线得到的混合层高度总体一致,也与地面细颗粒物浓度的变化特征保持高度的相关.
        Based on the analysis of the Mie scattering lidar in Chengdu from June 2013 to February 2014, it is shown that there are three layers near the top of the mixing layer of the atmospheric extinction coefficient from bottom to top, the significant decreasing layer, the overall slow transformation layer and the transition layer between the two. Using the logistic curve to fit the variation characteristics of the extinction coefficient, a new method to identify the mixing layer height is proposed by calculating the height of the curve's maximum curvature. The idea of the method accords with the definition of the mixing layer which is below the discontinuous interface of the turbulence characteristics. In addition, the results of the new method are not only consistent with the mixing layer height obtained by sounding curve, but also strongly related to the variation of fine particulate mass concentration.
引文
[1]Hu F,Hong Z,Lei X.Recent progress of atmospheric boundary layer physics and atmospheric environment research in IAP[J].Chinese Journal of Atmospheric Sciences,2003,27(4):712-728.
    [2]胡非,洪钟祥,雷孝恩.大气边界层和大气环境研究进展[J].大气科学,2003,27(4):712-728.
    [3]Tang Y L,Zeng X Z.Atmospheric environment[M].Guangzhou:Sun yat-sen university press,1988.
    [4]唐永銮,曾星舟.大气环境学[M].广州:中山大学出版社,1988.
    [5]Emeis S,Sch?fer K,Münkel C.Surface-based remote sensing of the mixing-layer height-a review[J].Meteorologische Zeitschrift,2008,17(15):621-630.
    [6]Yan G L,Han Y X,Zhang X Z,et al.Analysis of a haze event in Nanjing with micro-pulse lidar measurements[J].China Environmental Science,2014,34(7):1667-1672.
    [7]严国梁,韩永翔,张祥志,等.南京地区一次灰霾天气的微脉冲激光雷达观测分析[J].中国环境科学,2014,34(7):1667-1672.
    [8]Holzworth G C.Estimates of mean mixing depth in the contiguous United States[J].Monthly Weather Review,1964,92(5).
    [9]Nozaki K Y.Mixing depth model vsing hourly surface observation[R].USAF Environmental Technical Applications Center,1973,Report7053.
    [10]Cheng S Y,Xi D L,Zhang B N,et al.Study on the determination and calculating method of atmospheric mixing layer height[J].China Environmental Science,1997,17(6):512-516.
    [11]程水源,席德立,张宝宁,等.大气混合层高度的确定与计算方法研究[J].中国环境科学,1997,17(6):512-516.
    [12]Lilly D K.Models of cloud-topped mixed-layer under a strong inversion[J].Quarterly Journal of the Royal Meteorological Society,1968,94(401):292-309.
    [13]Betts A K.Non-precipitating cumulus convection and its parameterization[J].Quarterly Journal of the Royal Meteorological Society,1973,99(419):178–196.
    [14]Jiang W M,Miao S G,Zhang N,et al.Numerical simulation on urban meteorology and urban boundary layer[J].Advances in Earth Science,2010,25(5):463-473.
    [15]蒋维楣,苗世光,张宁,等.城市气象与边界层数值模拟研究[J].地球科学进展,2010,25(5):463-473.
    [16]Da zhou W U,Sun J N,Yuan R M,et al.An improvement on predicting the height of convective boundary layer[J].Journal of University of Science&Technology of China,2006,36(10):1111-1116.
    [17]伍大洲,孙鉴泞,袁仁民,等.对流边界层高度预报方案的改进[J].中国科学技术大学学报,2006,36(10):1111-1116.
    [18]Luo T,Yuan R,Wang Z.Lidar-based remote sensing of atmospheric boundary layer height over land and ocean[J].Atmospheric Measurement Techniques,2013,6(7):173-182.
    [19]Dong C Q,Zheng Y F,Wu Y L,et al.The effects of different planetary boundary layer schemes on PM2.5 concentration simulations in winter stable weather of Shanxi.China Environmental Science,2016,36(6):1669-1680.
    [20]董春卿,郑有飞,武永利,等.边界层方案对山西冬季一次静稳天气PM2.5浓度模拟的影响[J].中国环境科学,2016,36(6):1669-1680.
    [21]Wang Y T,Miao S G,Zhang X L.Seasonal characteristics of the aerosol optical parameters based on lidar over the Beijing Area.China Environmental Science,2016,36(4):970-978.
    [22]王耀庭,苗世光,张小玲.基于激光雷达的北京市气溶胶光学参数季节特征[J].中国环境科学,2016,36(4):970-978.
    [23]Hoff R M,Guise-Bagley L,Staebler R M,et al.Lidar,nephelometer,and in situ aerosol experiments in southern Ontario[J].Journal of Geophysical Research Atmospheres,1996,101(D14):19199–19209.
    [24]Menut L,Flamant C,Pelon J,et al.Urban boundary-layer height determination from mixing layer measurements over the paris area.[J].Applied Optics,1999,38(6):945-954.
    [25]Steyn D G,Baldi M,Hoff R M.The detection of mixed layer depth and entrainment zone thickness from mixing layer backscatter profiles[J].Journal of Atmospheric&Oceanic Technology,1999,16(7):953-959.
    [26]Brooks I M.Finding Boundary Layer Top:Application of a Wavelet Covariance Transform to Lidar Backscatter Profiles[J].Journal of Atmospheric&Oceanic Technology,2003,20(8):1092-1105.
    [27]Wang L,Xie C B,Han Y,et al.Comparison of retrieval methods of planetary boundary layer height from lidar data[J].Journal of Atmospheric&Environmental Optics,2012.
    [28]王琳,谢晨波,韩永,等.测量大气边界层高度的激光雷达数据反演方法研究[J].大气与环境光学学报,2012,7(4):241-247.
    [29]Li H,Ma Y Y,Yang Y.Study on retrieval of boundary layer height using wavelet transformation method basd on lidar data[J].Journal of Arid Mete-orology,2015,33(1):78-88.
    [30]李红,马媛媛,杨毅.基于激光雷达资料的小波变换法反演边界层高度的方法[J].干旱气象,2015,33(1):78-88.
    [31]He Q S,Mao J T.Observation of urban mixed layer at beijing using a micro pulse lidar[J].Acta Meteor Sinica(in Chinese).2005,63(3):374-384.
    [32]贺千山,毛节泰.北京城市大气混合层与气溶胶垂直分布观测研究[J].气象学报,2005,63(3):374-384.
    [33]Zhang W Y,Wang Y Q,Song J Y,et al.Reserch on logarithmic ratio k of aerosol backscatter extinction using lidar[J].Plateau Meteorology,2008,27(5):1083-1087.
    [34]张文煜,王音淇,宋嘉尧,等.激光雷达反演参数k值的研究[J].高原气象,2008,27(5):1083-1087.
    [35]Sun G.Five Stage of Logistic Curve[J].Journal of Mathematical Medicine,2012.
    [36]孙桂秋,凌高宏,黄爱武,等.逻辑斯谛曲线的五个阶段[J].数理医药学杂志,2012,25(3):269-270.
    [37]Ma J,Zheng X D.Comparisons of boundary mixing layer depths determined by the empirical calculation and radiosonde profiles[J].Journal of Applied Meteorological Science,2011,22(5):567-576.
    [38]马金,郑向东.混合层厚度的经验计算及与探空观测对比分析[J].应用气象学报,2011,22(5):567-576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700