用户名: 密码: 验证码:
接种比例和接种物驯化对榨汁橙渣厌氧发酵的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Inoculum to Substrate Ratio and Acclimation of Inoculum on Anaerobic Digestion of Orange Pressing Waste
  • 作者:席江 ; 艾平 ; 袁萧 ; 龙燕 ; 张衍林
  • 英文作者:XI Jiang;AI Ping;YUAN Xiao;LONG Yan;ZHANG Yanlin;College of Engineering,Huazhong Agricultural University;Biogas Institute,Ministry of Agriculture and Rural Affairs;
  • 关键词:榨汁橙渣 ; 厌氧发酵 ; 接种比例 ; 微生物群落组成 ; 接种物驯化
  • 英文关键词:orange pressing waste;;anerobic digestion;;inoculum to substrate ratio;;microbial community structure;;acclimation of inoculum
  • 中文刊名:NYJX
  • 英文刊名:Transactions of the Chinese Society for Agricultural Machinery
  • 机构:华中农业大学工学院;农业农村部沼气科学研究所;
  • 出版日期:2019-01-29 09:43
  • 出版单位:农业机械学报
  • 年:2019
  • 期:v.50
  • 基金:中国农业科学院科技创新工程项目(1251516100109)
  • 语种:中文;
  • 页:NYJX201903034
  • 页数:8
  • CN:03
  • ISSN:11-1964/S
  • 分类号:316-323
摘要
以榨汁橙渣为原料,研究了不同接种比例(接种物与原料的挥发性固体质量比)对厌氧发酵规律及发酵系统中细菌与古菌群落组成的影响,并探究了接种物驯化对厌氧发酵效率的影响。结果表明:接种比例为8、6和4时厌氧发酵能够正常进行,甲烷累积产率分别达到320. 0、304. 9、242. 6 m L/g,而接种比例为2时仅达到111. 4 m L/g,且在第2天厌氧发酵就进入停滞期,直到第8天才恢复产气;测序结果也显示接种比例为2的发酵系统中芽孢杆菌纲相对丰度下降到1. 88%,Methanosaeta和Methanospirillum的相对丰度也下降到24. 45%和1. 71%,影响了甲烷的产生;按照接种比例为8和6驯化接种物后可以有效缩短厌氧发酵周期,第3轮发酵前4 d的累积甲烷产量占总产甲烷量的95. 75%和93. 40%;接种比例为4条件下,接种物驯化对厌氧发酵的促进效果存在不确定性,驯化效果会受接种物原微生物群落组成的影响;而接种比例为2条件下通过接种物驯化也不能有效提高厌氧发酵的效率。为保障实验结果的准确性、可重复性和提高发酵效率,进行榨汁橙渣厌氧发酵的相关研究时,推荐选择接种比例为6,并进行至少一轮接种物驯化。
        Different inoculum and substrate ratio( ISR) was taken to conduct the anaerobic digestion of orange pressing waste( OPR), and the daily production of methane was recorded. The relative abundance of bacteria and archaea in the inoculum and sludge were tested to find out the change before and after anaerobic digestion. And the digested materials were used for the test on the improvement of anaerobic digestion after acclimation of inoculum. The results demonstrated that the cumulative methane production of ISR 8,6 and 4 were 320. 0 m L/g,304. 9 m L/g and 242. 6 m L/g,respectively,but that of ISR 2 was only 111. 4 m L/g after a lag phase of 7 d. And the relative abundance of bacterial and archaea community of ISR 2 was quite different from those in other tests. The relative abundance of Bacilli,Methanosaeta and Methanospirillum was decreased to 1. 88%,24. 45% and 1. 71%,respectively,which may cause the insufficient degradation of the substrate. Although there was no increase in the cumulative methane production in the 2 nd and 3 rd rounds of anaerobic digestion,the time employed to reach the final methane production was shorter than that in the 1 st round of ISR 8 and 6,and the cumulative methane production of the first 4 d was 95. 75% and 93. 40% of the total production in the 3 rd rounds.But it was unstable when ISR 4 was taken to conduct the test. In this situation,the improvement of anaerobic digestion would be decided by the source of the inoculum,and no improvement was found in the 2 nd and 3 rd rounds if the ISR was 2. According to the results,the optimum ISR for the anaerobic digestion of OPR was 6 whether in a test on the biomethane production from different OPR or in a pretreatment unit for the improvement of the methane production,and at least a round of anaerobic digestion was needed for the acclimation of the inoculum.
引文
[1] Food and Agriculture Organization of the United Nations. Citrus fruit-fresh and processed statistical bulletin 2016[R]. Market and Policy Analysis of Raw Materials,Horticulture and Tropical(RAMHOT)Products Team,2016.
    [2] WILKINS M R,SURYAWATI L,MANESS N O,et al. Ethanol production by Saccharomyces cerevisiae and Kluyveromyces marxianus in the presence of orange-peel oil[J]. World Journal of Microbiology and Biotechnology,2007,23(8):1161-1168.
    [3] MARTIN M A,SILES J A,CHICA A F,et al. Biomethanization of orange peel waste[J]. Bioresource Technology,2010,101(23):8993-8999.
    [4] SU H,TAN F,XU Y. Enhancement of biogas and methanization of citrus waste via biodegradation pretreatment and subsequent optimized fermentation[J]. Fuel,2016,181:843-851.
    [5] RUIZ B,FLOTATS X. Effect of limonene on batch anaerobic digestion of citrus peel waste[J]. Biochemical Engineering Journal,2016,109:9-18.
    [6] FAGBOHUNGBE M O,HERBERT B M,HURST L,et al. Impact of biochar on the anaerobic digestion of citrus peel waste[J]. Bioresoure Technology,2016,216:142-149.
    [7] SANJAYA A P,CAHYANTO M N,MILLATI R. Mesophilic batch anaerobic digestion from fruit fragments[J]. Renewable Energy,2016,98:135-141.
    [8] WIKANDARI R,NGUYEN H,MILLATI R,et al. Improvement of biogas production from orange peel waste by leaching of limonene[J]. Biomed Research International,2015,2015:494182.
    [9] FORGACS G,POURBAFRANI M,NIKLASSON C,et al. Methane production from citrus wastes:process development and cost estimation[J]. Journal of Chemical Technology&Biotechnology,2012,87(2):250-255.
    [10]崔宪,郭建斌,徐艳,等.秸秆湿贮存过程中添加剂协同调控对甲烷产量的影响[J/OL].农业机械学报,2018,49(9):302-310.CUI Xian,GUO Jianbin,XU Yan,et al. Effect of wei-storage additives on fermentation performance and biomethane potential of corn stover[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(9):302-310. http:∥www.j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20180935&journal_id=jcsam. DOI:10. 6041/j. issn.1000-1298. 2018. 09. 035.(in Chinese)
    [11] PERLLERA F,GIDARAKOS E. Effect of substrate to inoculum ratio and inoculum type on the biochemical methan potential of solid agroindustrial waste[J]. Journal of Environmental Chemical Engineering,2016,4(3):3217-3229.
    [12] CALABRO P S,PONTONI L,PORQUEDDU I,et al. Effect of the concentration of essential oil on orange peel waste biomethanization:preliminary batch results[J]. Waste Management,2016,48:440-447.
    [13] NEGRO V,RUGGERI B,FINO D. Recovery of energy from orange peels through anaerobic digestion and pyrolysis processes after d-limonene extraction[J]. Waste and Biomass Valorization,2018,9(8):1331-1337.
    [14] KAPARAJU P L N,RINTALA J A. Thermophilic anaerobic digestion of industrial orange waste[J]. Environmental Technology,2006,27(6):623-633.
    [15] CHOJNACKA A,SZCZESNY P,BLASZCZYK M K,et al. Noteworthy facts about a methane-producing microbial community processing acidic effluent from sugar beet molasses fermentation[J]. PLo S One,2015,10(5):e0128008.
    [16] LIU T,SUN L,MULLER B,et al. Importance of inoculum source and initial community structure for biogas production from agricultural substrates[J]. Bioresoure Technology,2017,245:768-777.
    [17] LI T,MAZEAS L,SGHIR A,et al. Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions[J]. Environmental Microbiology,2009,11(4):889-904.
    [18] SIEBER J R,MCINERNEY M J,GUNSALUS R P. Genomic insights into syntrophy:the paradigm for anaerobic metabolic cooperation[J]. Annual Review Microbiology,2012,66:429-452.
    [19] WIRTH R,KOVACS E,MAROTI G,et al. Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing[J]. Biotechnology for Biofuels,2012,5(1):41.
    [20]方晓瑜,李家宝,芮俊鹏,等.产甲烷生化代谢途径研究进展[J].应用与环境生物学报,2015,21(1):1-9.FANG Xiaoyu,LI Jiabao,RUI Junpeng,et al. Research progress in biochemical pathways of methanogenesis[J]. Chinese Journal of Applied and Environmental Biology,2015,21(1):1-9.(in Chinese)
    [21] DEMIREL B,SCHERER P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane:a review[J]. Reviews in Environmental Science and Bio/Technology,2008,7(2):173-190.
    [22]承磊,郑珍珍,王聪,等.产甲烷古菌研究进展[J].微生物学通报,2016,43(5):1143-1164.CHENG Lei,ZHENG Zhenzhen,WANG Cong,et al. Recent advances in methanogens[J]. Microbiology China,2016,43(5):1143-1164.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700