热拌沥青混合料碳排放量化与评价体系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon emission quantification and evaluation system of hot mix asphalt mixture
  • 作者:彭波 ; 邓海龙 ; 曹世江 ; 李文瑛
  • 英文作者:PENG Bo;DENG Hai-long;CAO Shi-jiang;LI Wen-ying;School of Highway, Chang'an University;Guiyang Engineering Corporation Limited of Power China;Xi'an Highway Institute;
  • 关键词:道路工程 ; 碳排放 ; 量化模型 ; 层次分析法 ; 评价体系
  • 英文关键词:road engineering;;carbon emission;;quantitative model;;analytic hierarchy process;;evaluation system
  • 中文刊名:XAGL
  • 英文刊名:Journal of Chang'an University(Natural Science Edition)
  • 机构:长安大学公路学院;中国电建集团贵阳勘测设计研究院有限公司;西安公路研究院;
  • 出版日期:2019-05-15
  • 出版单位:长安大学学报(自然科学版)
  • 年:2019
  • 期:v.39;No.191
  • 基金:陕西省自然科学基金项目(2011JM7001);; 陕西省交通运输厅科技计划项目(15-08K);; 甘肃省交通运输厅科研项目(201227);; 三门峡市科技发展计划项目(2014050406)
  • 语种:中文;
  • 页:XAGL201903002
  • 页数:9
  • CN:03
  • ISSN:61-1393/N
  • 分类号:5-13
摘要
为解决目前尚未建立热拌沥青混合料碳排放评价体系,无法正确反映沥青混合料碳排放水平和进一步开展沥青路面低碳减排工作等问题,通过对中国21条高等级公路沥青路面的碳排放来源调查,结合联合国政府间气候变化专门委员会和中国国家统计局提供的计算参数,建立了热拌沥青混合料能耗碳排放量化模型和高温挥发碳排放量化模型。运用层次分析法(AHP)得出不同种类沥青混合料碳排放的权重,依据同种沥青混合料在各个碳排放环节中的权重系数和碳排放量,采用海明贴近度理论,明确了同类沥青混合料在各施工环节碳排放总量的加权均值,并结合中国"十三五"规划提出的温室气体减排要求,提出了不同类型沥青混合料的碳排放总量评价标准及各施工环节的碳排放评价标准。研究结果表明:集料加热、沥青加热和混合料拌合环节的能耗碳排放分别占热拌沥青混合料能耗碳排放总量的65.62%、15.30%和12.22%;碾压、摊铺环节的高温挥发碳排放分别占沥青混合料高温挥发碳排放总量的91.56%和7.02%;以中国减排目标值、实测碳排放均值为碳排放分级评价界限,将热拌沥青混合料碳排放水平分为A级(轻度排放)、B级(中度排放)、C级(重度排放)。该研究成果提供了不同类型沥青混合料的碳排放评价指标,对指导沥青路面低碳施工具有积极意义。
        In order to solve the problems that a carbon emission evaluation system for hot mix asphalt mixture was not yet to be established, the carbon emission level of an asphalt mixture could not be correctly identified, and reduction of carbon emission in asphalt pavement needs further studied, the carbon emission sources for 21 high-grade asphalt pavements in China was adopted. The emission source survey, combined with the calculation parameters provided by the UN Intergovernmental Panel on Climate Change(IPCC) and the National Bureau of Statistics of China, a quantitative model for energy consumption carbon emissions of a hot mix asphalt mixture and a quantitative model for high temperature volatile carbon emissions were established. The weight of the carbon emissions for different asphalt mixture types was obtained by using an analytic hierarchy process(AHP). According to the weight coefficients and carbon emission of the same kind of asphalt mixture in each carbon emission link, the same kind of asphalt mixtures were identified using Hamming closeness theory. In the weighted average of the total carbon emissions in each construction link, combined with the emission reduction requirements proposed in the China "13 th Five-Year Plan", the evaluation standard for the total carbon emission for different asphalt mixture types and the carbon emissions of various construction links were proposed. The results show that the energy consumption carbon emissions for aggregate heating, asphalt heating, and mixture mixing account for 65.62%, 15.30%, and 12.22% of the total carbon emissions of the asphalt mixture, respectively. The high temperature of rolling and paving the volatile carbon emissions accounted for 91.56% and 7.02% of the high-temperature volatile carbon emissions of the asphalt mixture, respectively, and the China emission reduction target values and the measured carbon emission mean values are used as the carbon emission classification evaluation limits. The hot mixed asphalt mixture carbon emission level are divided into three types: A(mild emissions), B(medium emissions), and C(severe emissions). The research results provide evaluation indexes for carbon emissions of different types of asphalt mixtures, and these indexes are significant for ensuring low carbon concentrations in asphalt pavements. 7 tabs,1 fig,22 refs.
引文
[1] 中华人民共和国环境保护部.2016中国环境状况公报[EB/OL].(2017-06-06)[2018-08-15].http://www.gov.cn/xinwen/2017-06/06/content_5200281.htm.People's Republic of China Ministry of Environmental Protection.2016 China environmental status bulletin[EB/OL].(2017-06-06)[2018-08-15].http://www.gov.cn/xinwen/2017-06/06/content_5200281.htm.
    [2] Climate Science Special Report.Fourth national climate assessment (NCA4),volume Ⅰ.[EB/OL].(2017-06-06)[2018-08-15].https://science 2017.globalchange.gov/.
    [3] 喻洁,达亚彬,欧阳斌.基于LMDI分解方法的中国交通运输行业碳排放变化分析[J].中国公路学报,2015,28(10):112-119.YU Jie,DA Ya-bin,OUYANG Bin.Analysis of carbon emission changes in China's transportation industry based on LMDI decomposition method[J].China Journal of Highway and Transport,2015,28(10):112-119.
    [4] SANTOS J,FLINTSCH G,FERREIRA A.Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability[J].Resources,Conservation and Recycling,2017,116:15-31.
    [5] GALATIOTO F,HUANG Y,PARRY T,et al.Traffic modelling in system boundary expansion of road pavement life cycle assessment[J].Transportation Research Part D,2015,36:65-75.
    [6] WANG T,LEE I,KENDALL A,et al.Life cycle energy consumption and GHG emission from pavement rehabilitation with different rolling resistance[J].Journal of Cleaner Production,2012,33:89-98.
    [7] NOLAND R B,HANSON C S.Life-cycle greenhouse gas emissions associated with a highway reconstruction:A New Jersey case study[J].Journal of Cleaner Production,2015,107:731-740.
    [8] SCHLEGEL T,PUIATTI D,RITTER H J,et al.The limits of partial life cycle assessment studies in road construction practices:A case study on the use of hydrated lime in hot mix asphalt[J].Transportation Research Part D,2016,48:141-160.
    [9] KEIJZER E E,LEEGWATER G A,DE VOS-EFFTING S E,et al.Carbon footprint comparison of innovative techniques in the construction and maintenance of road infrastructure in The Netherlands[J].Environmental Science & Policy,2015,54:218-225.
    [10] 许宪硕.我国能源相关温室气体排放影响因素及归因分析研究[D].天津:天津大学,2015.XU Xian-shuo.Research on driving forces and attribution analysis of China's energy-related GHG emissions[D].Tianjin:Tianjin University,2015.
    [11] 柴明明,李明,齐桂才,等.就地热再生沥青路面建设期碳排放分析[J].公路交通科技,2016,33(10):148-151.CHAI Ming-ming,LI Ming,QI Gui-cai,et al.Analysis of carbon emission during hot in-place recycling asphalt pavement construction[J].Journal of Highway and Transportation Research and Development,2016,33(10):148-151.
    [12] 蔺瑞玉.沥青路面建设过程温室气体排放评价体系研究[D].西安:长安大学,2014.LIN Rui-yu.Research on greenhouse gas emission evaluation system for asphalt pavement construction[D].Xi'an:Chang'an University,2014.
    [13] 胡玥.基于集对分析-可变模糊集的路面能耗和环境排放研究[D].长沙:湖南大学,2017.HU Yue.Study on pavement energy consumption and environmental emission based on set pair analysis-variable fuzzy set model[D].Changsha:Hunan University,2017.
    [14] 联合国政府间气候变化专门委员会(IPPC).2006年IPCC国家温室气体清单指南[R].日内瓦:联合国政府间气候变化专门委员会(IPPC),2006.IPCC.2006 IPCC Guidelines for national greenhouse gas inventories[R].Geneva:IPPC,2006.
    [15] 国家统计局能源司.中国能源统计年鉴2016[M].北京:中国统计出版社,2016.Energy Bureau,National Bureau of Statistics.China energy statistics yearbook 2016[M].Beijing:China Statistics Press,2016.
    [16] 联合国政府间气候变化专门委员会(IPPC).气候变化2014综合报告[R].日内瓦:联合国政府间气候变化专门委员会(IPPC),2014.IPCC.Climate change 2014 synthesis report[R].Geneva:IPCC,2014.
    [17] 陈佳君.全球变暖潜能值的计算及其演变[J].船舶与海洋工程,2014(2):27-31.CHEN Jia-jun.On the calculation and evolution of global warming potential[J].Naval Architecture and Ocean Engineering,2014(2):27-31.
    [18] 谢守红,王利霞,邵珠龙.国内外碳排放研究综述[J].干旱区地理,2014,37(4):720-730.XIE Shou-hong,WANG Li-xia,SHAO Zhu-long.Review on carbon emissions researches at home and abroad[J].Arid Land Geography,2014,37(4):720-730.
    [19] 程穆宁,崔云霞,陆春松,等.能见度与颗粒物质量浓度之间的关系[J].环境科学与技术,2014,37(3):146-151,168.CHENG Mu-ning,CUI Yun-xia,LU Chun-song,et al.Relationships between atmospheric visibility and particle mass concentrations[J].Environmental Science & Technology,2014,37(3):146-151,168.
    [20] 战尧文.沥青混合料碳排放计算模型及分级标准研究[D].西安:长安大学,2014.ZHAN Yao-wen.Study on the calculation model and grading standard for the CO2 emission of hot asphalt mixture[D].Xi'an:Chang'an University,2014.
    [21] 李莹芳.贴近度理论及其在模糊推理中的应用[D].成都:西南交通大学,2015.LI Ying-fang.Similarity measures on fuzzy reasoning[D].Chengdu:Southwest Jiaotong University,2015.
    [22] 中华人民共和国国务院.“十三五”控制温室气体排放工作方案[EB/OL].(2016-10-27)[2018-08-15].http://www.gov.cn/gongbao/content/2016/content_5139816.htm.State Council of the People's Republic of China.“13th Five-Year Plan” to control greenhouse gas emissions[EB/OL].(2016-10-27)[2018-08-15].http://www.gov.cn/gongbao/content/2016/content_5139816.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700