鄱阳湖水利枢纽工程对鄱阳湖水文水动力影响的模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A simulation research of impacts of the Lake Poyang hydraulic project on hydrology and hydrodynamics
  • 作者:赖格英 ; 王鹏 ; 黄小兰 ; 熊家庆 ; 刘影 ; 曾峰海
  • 英文作者:LAI Geying;WANG Peng;HUANG Xiaolan;XIONG Jiaqing;LIU Ying;ZENG Fenghai;Key Lab of Poyang Lake Wetland and Watershed Research,Ministry of Education,Jiangxi Normal University;School of Geography and Environment,Jiangxi Normal University;
  • 关键词:鄱阳湖 ; 水利枢纽工程 ; EFDC模型 ; 水文水动力 ; 数值模拟
  • 英文关键词:Lake Poyang;;hydraulic project;;EFDC model;;hydrology and hydrodynamic;;numerical simulation
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:江西师范大学鄱阳湖湿地与流域研究教育部重点实验室;江西师范大学地理与环境学院;
  • 出版日期:2015-01-06
  • 出版单位:湖泊科学
  • 年:2015
  • 期:v.27
  • 基金:国家重点基础研究发展计划“973”项目(2012CB417003);; 江西省重大生态安全问题监控协同创新中心项目(JXSEW-07)联合资助
  • 语种:中文;
  • 页:FLKX201501016
  • 页数:13
  • CN:01
  • ISSN:32-1331/P
  • 分类号:130-142
摘要
水流情势变化是河湖生态系统演变最主要的驱动力,拟建的鄱阳湖水利枢纽工程对鄱阳湖水文水动力会产生何种影响是一个值得深入研究的问题.本研究基于EFDC模型构建了鄱阳湖水动力的二维模型,并按照规划中的鄱阳湖水利枢纽工程调度方案,通过丰平枯典型年份的情景模拟,探讨了鄱阳湖水利枢纽工程运行调度方案对湖泊水文水动力的可能影响.模拟结果表明:不同情景年型鄱阳湖水利枢纽工程低枯水位生态调节期(12月1日至3月底4月初)中11 m控制水位对该时期湖泊平均水位的抬升程度明显,2010年(丰水年)11 m控制水位对枯水期湖泊平均水位的最大抬升为2.59 m,2000年(平水年)枯水期湖泊的平均水位最大抬升为2.68 m,而2004年(枯水年)枯水期湖泊的平均水位最大抬升为4.35 m.枯水期水位的抬升,使不同年型不同湖区的枯水期平均流速、最大流速和最小流速都有不同程度的减小,其中以入江河道为最,2000年和2010年枯水期平均流速降幅在44%以上,2004年(枯水年)枯水期的平均降速范围在50%以上,而对两大保护区的影响则较小.对流场格局的影响方面,主要表现在有枢纽时由于低枯水期的11 m水位控制,棠荫以北尤其是入江河道的流场与无枢纽时的流场表现出明显的不同;棠荫以南的湖区,当赣江中支和赣江南支的来水较大时,在棠荫附近及松门山以南的湖区会呈现出较大的水面.同时由于枯水期的水位抬升和流速减小,水利枢纽工程对湖泊换水周期的作用明显,不同年型的换水周期都受到不同程度的影响,2004年枢纽控水过程使控水期间的平均换水周期增加了5.6 d,影响程度达26.1%;模型模拟结果可以揭示在目前调度方案下,水利枢纽工程对鄱阳湖水文水动力的影响程度,为进一步定量分析鄱阳湖水利枢纽工程对湖泊水质和生态系统演化及其可能造成的影响提供必要的基础支撑.
        Flow regime change is the main dynamics to affect the lake ecological system evolution. It is worth studying that how the proposed Lake Poyang hydraulic project( PLPHP) will impact the hydrology and hydrodynamics of Lake Poyang. Based on the EFDC model,a two-dimensional model of Lake Poyang hydrodynamics is constructed. According to the planning water level regulation scheme of PLPHP,this research discusses the possible influence of PLPHP on hydrology and hydrodynamics of Lake Poyang using the method of scenario simulation( including normal,dry and wet hydro-years). The simulation result shows that the 11 m controlled water level in eco-adjustment period of low-water level( from Dec. 1st to the end of Mar. or early Apr.) will effectively uplift the average water level of Lake Poyang in this period. The maximum uplift of average water level in the lake will be 2. 59 m in wet hydro-year( 2010),4. 35 m in dry hydro-year( 2004),2. 68 m in normal hydro-year( 2000),respectively. These uplifts of water level in eco-adjustment period of low-water level will lead to the different level decreases of average flow velocity,maximum flow velocity and minimum flow velocity of low-water level period in different hydro-year scenario. The maximum decrease of flow velocity is in the waterway of Lake Poyang into the Yangtze River( which is located in Xingzi to Hukou),in which drop in average velocity is more than 44% in 2000 and 2010,50% in 2004,but the effect of flow velocity on two natural reserves is small. As to the effect of flow pattern,the main result shows that because of the 11 m controlled water level with PLPHP scenario,the flow pattern is apparently different from that without PLPHP in the north of Tangyin,especially in the waterway of Lake Poyang into the Yangtze River. Furthermore,the region,in the vicinity of Tangyin and south of Songmenshan,will show larger water surface with more complex flow pattern when the volumes of flow in middle and south two branches of Ganjiang River are larger. Because of the uplift of water level and the drop of flow velocity,PLPHP has significant impact on water exchange cycle( WEC) of lake and WECs in different hydro-year scenarios are affected to varying degrees,the average WEC increasing by 5. 6 d in 2004,the extent of impact being 26. 1%. Therefore,the simulation results can reveal the impact extent of PLPHP on hydrology and hydrodynamics with the planning water-level regulation scheme,and provide some foundation at support to study the influence of PLPHP on water quality and ecological system evolution.
引文
[1]谢冬明,郑鹏,邓红兵等.鄱阳湖湿地水位变化的景观响应.生态学报,2011,31(5):1269-1276.
    [2]洪峰,陈文静,周辉明等.鄱阳湖水利枢纽工程对水生生物影响的探讨.江西科学,2010,28(4):555-558.
    [3]葛刚,纪伟涛,刘成林等.鄱阳湖水利枢纽工程与湿地生态保护.长江流域资源与环境,2010,19(6):606-613.
    [4]马超,练继建.人控调度方案对库区支流水动力和水质的影响机制初探.天津大学学报,2011,44(3):202-209.
    [5]Li J.Scientists line up against dam that would alter protected wetlands.Science,2009,326:508-509.
    [6]Humborg C,Ittekkot V,Cociasu A et al.Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure.Nature,1997,386(6626):385-388.
    [7]Wang B,Uwe B.Potential impacts of Three Gorges Dam in China on the ecosystem of East China Sea.Acta Oceanologica Sinica,2008,27(1):67-76.
    [8]傅开道,黄河清,钟荣华等.水库下游水沙变化与河床演变研究综述.地理学报,2011,66(9):1239-1250.
    [9]Nikora V.Hydrodynamics of aquatic ecosystems:An interface between ecology,biomechanics and environmental fluid mechanics.River Research and Applications,2010,26(4):367-384.
    [10]冷疏影,杨桂山,刘正文等.湖泊及流域科学重点发展领域与方向.中国科学基金,2003,(2):82-85.
    [11]Obeysekera J,Kuebler L,Ahmed S et al.Use of hydrologic and hydrodynamic modeling for ecosystem restoration.Critical Reviews in Environmental Science and Technology,2011,41(supp.1):447-488.
    [12]潘晓东,王伟卓,唐健生等.哈达山水库水动力与水质模拟研究.人民黄河,2010,32(8):61-62.
    [13]Onnish Y,Imasato N.Study on the currents in Lake Biwa(Ⅲ).Journal of the Oceanographical Society of Japan,1979,(9):53-60.
    [14]Endoh S.Diagnostic study on the vertical circulation and the maintenance mechanisms of the cyclonic gyre in Lake Biwa.Journal of Geophysical Research,1986,91(C1):869-876.
    [15]Ferrari A,Fraccarollo L,Dumbser M et al.Three-dimensional flow evolution after a dam break.Journal of Fluid Mechanics,2010,663:456-477.
    [16]陈江.引江济太长江水源地岸线稳定性与河床演变研究[学位论文].南京:河海大学,2007.
    [17]李云良,张奇,姚静等.鄱阳湖湖泊流域系统水文水动力联合模拟.湖泊科学,2013,25(2):227-235.
    [18]Li Y,Zhang Q,Yao J et al.Hydrodynamic and hydrological modeling of the Lake Poyang catchment system in China.American Society of Civil Engineers,2014,19:607-616.
    [19]陈栋.三峡水库非期水动力及水质模拟研究[学位论文].济南:山东大学,2008.
    [20]辛小康,尹炜,叶闽.水动力调控三峡库区支流水华方案初步研究.水电能源科学,2011,29(7):16-18.
    [21]胡春华,施伟,胡龙飞等.鄱阳湖水利枢纽工程对湖区氮磷营养盐影响的模拟研究.长江流域资源与环境,2012,21(6):749-755.
    [22]杜彦良,周怀东,毛战坡等.鄱阳湖水利枢纽工程对水质环境影响研究.中国水利水电科学研究院学报,2011,9(4):249-256.
    [23]余启辉,马强,游中琼.鄱阳湖水利枢纽调度对湖区枯期水位与流速影响.人民长江,2013,44(17):18-21.
    [24]王鹏,赖格英,黄小兰.鄱阳湖水利枢纽工程对湖泊水位变化影响的模拟.湖泊科学,2014,26(1):29-36.
    [25]Zhou J,Pan S,Falconer RA et al.Effects of open boundary location on the far-field hydrodynamics of a Severn Barrage.Ocean Modelling,2014,73:19-29.
    [26]Scott CJ,Vijayasarathi J,David TH et al.Simulating p H effects in an algal-growth hydrodynamics model.Journal of Phycology,2013,49(3):606-615.
    [27]Krause1 P,Boyle DP,Base F.Comparison of different efficiency criteria for hydrological model assessment.Advances in Geosciences,2005,5:89-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700