在轨冷气推进系统泄漏估计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Estimation for Cold Gas Propellant Leakage on Orbit
  • 作者:李强 ; 李会锋 ; 袁媛 ; 李明 ; 张伟
  • 英文作者:LI Qiang;LI Hui-feng;YUAN Yuan;LI Ming;ZHANG Wei;State Key Laboratory of Astronautic Dynamics;Xi'an Satellite Control Center;
  • 关键词:冷气推进系统 ; 姿态控制 ; 泄漏 ; 估计 ; 预测 ; 遥测
  • 英文关键词:Cold gas propulsion system;;Attitude control;;Leakage;;Estimation;;Prediction;;Telemetry
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:宇航动力学国家重点实验室;西安卫星测控中心;
  • 出版日期:2018-04-02 13:37
  • 出版单位:推进技术
  • 年:2018
  • 期:v.39;No.251
  • 语种:中文;
  • 页:TJJS201805028
  • 页数:7
  • CN:05
  • ISSN:11-1813/V
  • 分类号:232-238
摘要
针对近地卫星长期管理与测控中冷气推进系统的泄漏问题,在轨道动力学数据基础上分析光照角漂移与半长轴衰减变化,利用气态方程对推进剂的泄漏率进行估计,进而对剩余推进剂进行预测,并对冷气泄漏造成的姿态扰动进行估计,同时在公式推导基础上对泄漏率估计进行计算误差分析,结合实际在轨的压力、温度等遥测数据进行检验。结果表明,在压力接近13MPa的初始条件之下,冷气推进系统的工质泄漏率在入轨的约前5y的时间里大致在150~450Pa·cm~3·s~(-1)之间振荡变化,在之后的时间里渐趋于275Pa·cm~3·s~(-1)稳定,与之对应的稳定的氮气质量泄漏率约为3.4μg/s;在轨10y时,推进剂质量的剩余率大于85%,预测入轨30y后的剩余率仍然优于60%;姿态角、磁力矩器电流、动量轮转速等数据表明冷气泄漏对卫星姿态扰动很小,可忽略不计。估计与预测结果可应用于在轨航天器长期管理与遥测诊断辅助、器件健康状态评估。
        With respect to long-term management of satellites on orbit in TTC(Tracking,Telemetry and Command),cold gas propellant leakage is a key performance parameter for LEO(Low Earth Orbit)satellite propulsion system. Based on the orbital dynamics data,details on solar incidence shift and semi major axis degradation are discussed. After analyzing pressure and temperature parameters from satellite history telemetry data,an estimation has presented to model propellant leakage with gaseous equation. This estimation has calculation error analysis based on formula derivation,and satellite attitude change caused by propellant leakage has been considered,too. In the following stage,a prediction has made to calculate the remaining propellant to work for attitude control. Validated by cold gas pressure and temperature data from satellite telemetry,the result has illustrated that cold gas propellant of nitrogen has a leakage between 150 Pa·cm~3·s~(-1) and 450 Pa·cm~3·s~(-1) from the original pressure about 13 MPa in the early 5 years,and has a gradual convergence of 275 Pa·cm~3·s~(-1) that is approximately about 3.4μg/s for nitrogen gas in subsequent years. At the same time,the result has implied that the remaining propellant mass is more than 85% of the original mass in the early 10 years and will be more than 60% of that after the following 20 years. By calculating precision of satellite attitude control system data such as attitude angle,magnetic torque current and momentum wheel revolution,cold gas leakage has nearly zero effect to satellite attitude. Finally,estimation and prediction result is applicable to telemetry diagnosis assistant for long-term management of satellite on orbit,and to evaluation of device SOH(State of Health)for longevity satellite.
引文
[1]边炳秀.卫星推进系统的历史、现状和未来[J].控制工程,2001,8(5):28-39.
    [2]屠善澄.卫星姿态动力学与控制(4)[M].北京:中国宇航出版社,2009,40-69.
    [3]王璐,李国岫,虞育松,等.微小超高压冷气推进系统动态工作性能仿真研究[J].上海航天,2014,31(6):52-56.
    [4]周伟勇,张育林.基于有效比冲的小卫星冷气推进系统设计[J].宇航学报,2010,31(1):173-178.
    [5]尤裕荣,曾维亮.冷气发动机系统动态特性仿真研究[J].火箭推进,2009,35(6):14-18.
    [6]唐飞,叶雄英,周兆英.MEMS冷气推进器的制作及实验研究[J].微纳电子技术,2003,40(7):441-444.
    [7]Ryan P,Christopher T.Design,Test,and Validation of a Refrigerant-Based Cold-Gas Propulsion System for Small Satellites[C].Logan,Utah:24th Annual AIAA/USU Conference on Small Satellites,2010.
    [8]梁振华,刘旭辉,朱朋,等.固体冷气推进剂性能初步分析[J].推进技术,2016,37(1):181-187.(LIANG Zhen-hua,LIU Xu-hui,ZHU Peng,et al.Preliminary Analysis on Properties of Solid Cool Gas Propellant[J].Journal of Propulsion Technology,2016,37(1):181-187.)
    [9]李明新,汤海滨,张尊.微小推力冷气发动机动静态性能实验研究[J].推进技术,2013,34(6):728-733.(LI Ming-xin,TANG Hai-bin,ZHANG Zun.Ex-perimental Investigation on Dynamic and Steady Performance of Cold Gas Micro-Propulsion Thruster[J].Journal of Propulsion Technology,2013,34(6):728-733.)
    [10]David H.A Novel Cold Gas Propulsion System for Nanosatellites and Picosatellites[C].Logan,Utah:22nd Annual AIAA/USU Conference on Small Satellites,2008.
    [11]Hiroyuki K,Hiroki K,Kazuya Y,et al.On-orbit Performance of a Miniature Propulsion System on a 70 kg Space Probe to Explore Near-Earth Asteroids[C].Logan,Utah:29th Annual AIAA/USU Conference on Small Satellites,2015.
    [12]汪旭东,范旭丰,陈君,等.微小冷气比例推力器模块的数据驱动PID控制策略[J].信息与控制,2014,43(3):381-384.
    [13]李晶,蒋金伟,赵宝瑞.冷气发动机小推力测量系统[J].宇航计测技术,2003,23(6):14-17.
    [14]Kvell U,Puusepp M,Kaminski F,et al.Nanosatellite Orbit Control Using MEMS Cold Gas Thrusters[J].Proceedings of the Estonian Academy of Sciences,2014,63(2):279-285.
    [15]Joseph C,Jesus A.Design and Test of an Economical Cold Gas Propulsion System[C].Logan,Utah:14th Annual AIAA/USU Conference on Small Satellites,2000.
    [16]刘展,厉彦忠,王磊,等.低温推进剂长期在轨压力管理技术研究进展[J].宇航学报,2014,35(3):254-261.
    [17]徐福祥.用地球磁场和重力场成果挽救风云一号(B)卫星的控制技术[J].宇航学报,2001,22(2):1-11,17.
    [18]彭仁军,马雪阳,郑科宇,等.一颗低轨道卫星在轨故障抢修与恢复[J].航天器工程,2008,17(1):24-29.
    [19]郝培杰,徐冰霖,卢晓东,等.卫星单粒子闩锁异常的诊断与自动报警[J].飞行器测控学报,2014,33(6):512-517.
    [20]吴文瑞,黄海.太阳同步轨道卫星热控分系统分析及优化[J].航天器工程,2012,21(2):44-49.
    [21]过九镕.两颗通信卫星热控分系统长期在轨性能评述[J].中国空间科学技术,1991,11(5):29-33.
    [22]宋馨,张有为,刘自军,等.基于卫星在轨温度预示热控涂层性能退化的方法[J].中国空间科学技术,2015,35(6):40-47.
    [23]廖彬,曾详兵,潘晓霞,等.聚四氟乙烯密封圈密封性能研究[J].真空科学与技术学报,2015,35(1):69-73.
    [24]蔺金贤,钟志京,张豫川,等.不规则形状容器容积的两种快速标定方法[J].真空科学与技术学报,2015,35(1):64-68.
    [25]Flament N,Williams S,Muller R D,et al.Origin and Evolution of the Deep Thermochemical Structure Beneath Eurasia[J].Nature Communications,2017,(8):1-9.
    [26]李强,洪涛,林乐天.测控中的星载计算机快速切换[J].飞行器测控学报,2016,35(2):125-130.
    [27]唐美燕,谢海斌.均匀分布的四舍五入数据对参数估计的影响[J].吉林师范大学学报(自然科学版),2013,35(1):103-107.
    [28]汤恩义,周岩,欧建生,等.面向条件判定覆盖的线性拟合制导测试生成[J].软件学报,2016,27(3):593-610.
    [29]杨连乔,陈伟,阙秀福,等.基于指数拟合的半导体瞬态热学测试分析方法[J].仪器仪表学报,2015,36(11):2420-2426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700