燃气轮机燃烧室预混燃烧器天然气燃料/空气掺混均匀性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation of Fuel/Air Mixing Uniformity in a Natural Gas Premixed Burner for Gas Turbine Combustor Applications
  • 作者:邵卫卫 ; 赵岩 ; 刘艳 ; 王翰林 ; 田勇 ; 路源 ; 张哲巅 ; 肖云汉
  • 英文作者:SHAO Weiwei;ZHAO Yan;LIU Yan;WANG Hanlin;TIAN Yong;LU Yuan;ZHANG Zhedian;XIAO Yunhan;Key Laboratory of Advanced Energy and Power (Institute of Engineering Thermophysics),Chinese Academy of Sciences;Research Center for Clean Energy and Power,Chinese Academy of Sciences;
  • 关键词:燃气轮机 ; 天然气 ; 预混燃烧 ; 燃/空预混不均匀度 ; 射流深度 ; NOx排放 ; OH分布
  • 英文关键词:gas turbine;;natural gas;;premixed combustion;;fuel/air spatial mixing deficiency;;penetration depth;;NOx emission;;OH concentration distribution
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:中国科学院先进能源动力重点实验室(工程热物理研究所);中国科学院能源动力研究中心;
  • 出版日期:2017-01-19 15:35
  • 出版单位:中国电机工程学报
  • 年:2017
  • 期:v.37;No.566
  • 基金:国家973青年科学家项目(2014CB247500);; 中国科学院国际合作局对外合作重点项目(182211KYSB20160039)~~
  • 语种:中文;
  • 页:ZGDC201703016
  • 页数:9
  • CN:03
  • ISSN:11-2107/TM
  • 分类号:148-156
摘要
采用数值模拟与实验研究相结合的方法开展了应用于燃气轮机燃烧室的预混燃烧器中燃料/空气掺混均匀性问题研究。在CHEMKIN软件中建立化学反应网络模型,通过零维模拟研究了燃/空预混不均匀度对NO_x排放的影响规律。针对某预混燃烧器,从影响燃料/空气掺混均匀性角度,采用三维数值模拟手段对预混段长度和燃料孔径结构开展了参数化研究,评估了预混段长度对流场和组分场的综合影响,着重关注燃/空动量比对燃料射流深度的影响,进而分析其对燃料/空气掺混性能的影响。最后,选取2种典型预混燃烧器结构,实验测量了预混火焰在不同当量比工况下的OH分布和NO_x排放。结果表明,相同当量比工况下,2种预混燃烧器火焰结构相似,尺寸变化不大,但燃/空掺混性能更优的火焰OH峰值信号强度低,脉动小;燃/空预混不均匀度直接影响NO_x排放,尤其在高当量比工况下影响更加显著。研究结果将对预混燃烧器优化设计提供参考。
        Fuel/air mixing uniformity issues in a premixed burner for gas turbine applications were investigated by numerical simulations and experimental studies. Chemical reaction network model was built by CHEMKIN software to analyze the effect of fuel/air unmixedness on NOx emissions. Parametric studies of the influencing factors such as premixing channel length and fuel jet diameter were developed by three dimensional numerical methods. Influence of the premixed channel length on flow field and mixing performance of the burner were evaluated. The effects of fuel/air momentum ratio on the fuel penetration depth and then the mixing uniformity were mainly discussed. Finally, the two typical premixed burners were selected and experimental studies at different equivalence ratio conditions were conducted. Results indicated, the flame shape and size of the two burners at same equivalence ratio conditions were similar, however, OH distributions of the burner with a better mixing performance showed a lower peak value and smaller fluctuation. Fuel-air mixing performance directly influenced NOx emissions of the burner, especially for the high equivalence ratio conditions. Results obtained in this research would provide a reference for optimization design of a premixed burner.
引文
[1]Davis L B,Black S H.Dry low NOx combustion systems for GE heavy-duty gas turbines[R].GER-3568G,New York:GE Power System,1996.
    [2]Venkataraman K,Lewis S E,Natarajan J,et al.F-class DLN technology advancements:DLN2.6+[C]//Proceedings of ASME Turbo Expo:Turbine Technical Conference and Exposition.Vancouver,British Columbia,Canada:ASME,2011,3:587-594.
    [3]GE Power System.Dry low NOx 2.6+combustion system9FA/9FB gas turbines[R].New York:GE Power System,2013.
    [4]Tanimura S,Nose M,Ishizaka K,et al.Advanced dry low NOxcombustor for mitsubishi g class gas turbines[C]//Proceedings of ASME Turbo Expo 2008:Power for Land,Sea,and Air.Berlin,Germany:ASME,2008,3:607-615.
    [5]Ito E,Okada I,Tsukagoshi K,et al.Development of key technologies for the next generationhigh temperaturegas turbine[C]//Proceedings of ASME Turbo Expo:Turbine Technical Conference and Exposition.Vancouver,Canada:ASME,2011,3:579-586.
    [6]Ito E,Okada I,Tsukagoshi K,et al.Development of key technologies for the next generation gas turbine[C]//Proceedings of ASME Turbo Expo 2010:Power for Land,Sea,and Air.Glasgow,UK:ASME,2010,1:847-860.
    [7]Leonard G,Stegmaier J.Development of an aeroderivative gas turbine dry low emissions combustion system[J].Journal of Engineering for Gas Turbines and Power,1994,116(3):542-546.
    [8]Fric T F.Effects of fuel-air unmixedness on NOx emissions[J].Journal of Propulsion and Power,1993,9(5):708-713.
    [9]Leong M Y,Samuelsen G S,Holdeman J D.Mixing of jet air with a fuel-rich,reacting crossflow[J].Journal of Propulsion and Power,1999,15(5):617-622.
    [10]Biagioli F,Güthe F.Effect of pressure and fuel-air unmixedness on NOx emissions from industrial gas turbine burners[J].Combustion and Flame,2007,151(1-2):274-288.
    [11]孙宝成.燃气轮机燃料/空气掺混规律的数值研究[D].北京:清华大学,2007.Sun Baocheng.Numerical study of fuel/air unmixedness in a nonreacting gas turbine combustor[D].Beijing:Tsinghua University,2007(in Chinese).
    [12]冯冲,祁海鹰,谢刚,等.干式低NOx燃气轮机燃烧室的燃料/空气预混均匀性问题分析[J].中国电机工程学报,2011,31(17):9-19.Feng Chong,Qi Haiying,Xie Gang,et al.Analysis on the issue of fuel/air premixing uniformity of the dry lowN Oxgas turbine combustor[J].Proceedings of the CSEE,2011,31(17):9-19(in Chinese).
    [13]谢刚,祁海鹰,李宇红,等.R0110重型燃气轮机燃烧室污染排放性能研究[J].中国电机工程学报,2010,30(20):51-57.Xie Gang,Qi Haiying,Li Yuhong,et al.Emission performance of the dry low NOx combustors for R0110heavy-duty gas turbine[J].Proceedings of the CSEE,2010,30(20):51-57(in Chinese).
    [14]Stopper U,Meier W,Sadanandan R,et al.Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field,fuel/air premixing and flame shape[J].Combustion and Flame,2013,160(10):2103-2118.
    [15]Hohloch M,Sadanandan R,Widenhorn A,et al.OH*chemiluminescence and OH-PLIF measurements in a micro gas turbine combustor[C]//Proceedings of ASMETurbo Expo 2010:Power for Land,Sea,and Air.Glasgow,UK:ASME,2010,2:655-664.
    [16]Guethe F,Guyot D,Singla G,et al.Chemiluminescence as diagnostic tool in the development of gas turbines[J].Applied Physics B,2012,107(3):619-636.
    [17]Shao Weiwei,Xiong Yan,Mu Kejin,et al.The influence of fuel-air swirl intensity on flame structures of syngas swirl-stabilized diffusion flame[J].Journal of Thermal Science,2010,19(3):276-283.
    [18]GRI-Mech3.0[EB/OL].http://combustion.berkeley.edu/gri-mech/releases.html.
    [19]王翰林,雷福林,邵卫卫,等.合成气燃气轮机燃烧室CFD模拟的模型选择及优化[J].中国电机工程学报,2015,35(6):1429-1435.Wang Hanlin,Lei Fulin,Shao Weiwei,et al.Screening and modification of CFD models for syngas turbine combustor[J].Proceedings of the CSEE,2015,35(6):1429-1435(in Chinese).
    [20]Fluent 16.User’s Guide[EB/OL].http://www.ansys.com/Products/Fluids/ANSYS+Fluent.
    [21]Lilley D G.Swirl flows in combustion:a review[J].AIAAJournal,1977,15(8):1063-1078.
    [22]Samuelsen S.Rich burn,quick-mix,lean burn(RQL)combustor[R].Pittsburgh:National Energy Technology Laboratory,2006:227-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700