凹腔对一体化支板火焰稳定器燃烧性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of cavity on combustion characteristics of integrated strut flame stabilizer
  • 作者:刘广海 ; 刘玉英 ; 谢奕
  • 英文作者:LIU Guanghai;LIU Yuying;XIE Yi;School of Energy and Power Engineering,Beijing University of Aeronautics and Astronautics;
  • 关键词:喷油/稳定一体化支板火焰稳定器 ; 凹腔 ; 燃烧效率 ; 熄火 ; 液雾分布参数
  • 英文关键词:fuel injection/stabilization integrated strut flame stabilizer;;cavity;;combustion efficiency;;blow off;;droplets distribution parameters
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:北京航空航天大学能源与动力工程学院;
  • 出版日期:2018-07-20 09:27
  • 出版单位:航空动力学报
  • 年:2018
  • 期:v.33
  • 语种:中文;
  • 页:HKDI201808006
  • 页数:7
  • CN:08
  • ISSN:11-2297/V
  • 分类号:55-61
摘要
在来流温度为780~850℃、来流马赫数为0.16及油气比为0.002~0.006的条件下,试验研究了凹腔对喷油/稳定一体化支板火焰稳定器燃烧效率及熄火性能的影响,并结合数值模拟进行辅助分析。结果表明:在不同油气比条件下,带凹腔的一体化支板火焰稳定器均能实现稳定高效燃烧;不带凹腔的一体化支板火焰稳定器燃烧效率始终低于带凹腔的一体化支板火焰稳定器,随着油气比的增加,两者燃烧效率差距逐渐缩小;带凹腔的一体化支板火焰稳定器较不带凹腔的一体化支板火焰稳定器有更好的熄火性能;凹腔结构促进了燃油雾化与蒸发,从而提高一体化支板火焰稳定器的燃烧性能。
        Effect of cavity on combustion efficiency and blow off characteristic of fuel injection/stabilization integrated strut flame stabilizer were experimentally investigated under the condition of incoming flow temperature 780-850℃,incoming flow Mach number 0.16,fuel air ratio 0.002-0.006.Numerical simulation was also used to assist analysis.The results show that integrated strut flame stabilizer with cavity could achieve stable and high efficiency flames under the condition of various fuel air ratios;combustion efficiency of integrated strut flame stabilizer without cavity is worse than that of the integrated strut flame stabilizer with cavity,the differences between the integrated strut flame stabilizer with cavity and without cavity decreases gradually with the increase of fuel air ratio;the flame stabilizer with cavity performs better on blow off than flame stabilizer without cavity.Cavity structure could promote the atomization and evaporation characteristic of fuel,and improve combustion characteristics of integrated strut flame stabilizer.
引文
[1]侯晓春,季鹤鸣,刘庆国,等.高性能航空燃气轮机燃烧技术[M].北京:国防工业出版社,2002.
    [2]LOVETT J A,BROGAN T P,PHILIPPONA D S,et al.Development needs for advanced afterburner designs[C]∥40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Roston,Virigina:AIAA,2004:1-12.
    [3]金如山,索建秦.先进加力燃烧室技术发展[C]∥中国航空学会第七届动力年会论文集.贵阳:中国航空学会,2010:594-599.
    [4]马梦颖,金捷,季鹤鸣.航空发动机加力燃烧室技木及新颖结构方案[J].燃气涡轮实验与研究,2008,21(4):55-59.MA Mengying,JIN Jie,JI Heming.Technonlgy and new configuration of areo-engine afterburner[J].Gas Turbine Experiment and Research,2008,21(4):55-59.(in Chinese)
    [5]CLEMENTS T R,GRAVES C B.Augmentor burner:US5385015[P].1995-01-31.
    [6]CLEMENTS T R.Method for distributing fuel within an augmentor:US5685140[P].1997-11-11.
    [7]KOSHOFFER J M.Method and apparatus for gas turbine engines:US6983601[P].2006-01-10.
    [8]孙雨超,张志学,李江宁,等.一体化加力燃烧室方案设计及数值研究[J].航空科学技术,2011(4):71-74.SUN Yuchao,ZHANG Zhixue,LI Jiangning,et al.Design and numerical research of integrated rear frame and afterburner[J].Aeronautical Science and Technology,2011(4):71-74.(in Chinese)
    [9]梁春华,杨东丹,刘红霞,等.航空发动机新型补燃增推燃烧室的现状与发展[J].航空发动机,2012,38(5):1-5.LIANG Chunhua,YANG Dongdan,LIU Hongxia,et al.Present and future development of advanced second burner for aeroengine[J].Aeroengine,2012,38(5):1-5.(in Chinese)
    [10]张孝春,孙雨超,刘涛.先进加力燃烧室设计技术综述[J].航空发动机,2014,40(2):24-30.ZHANG Xiaochun,SUN Yuchao,LIU Tao.Summary of advanced afterburner design technology[J].Aeroengine,2014,40(2):24-30.(in Chinese)
    [11]杨开田,张孝先,王泽军,等.航空发动机设计手册:第11册[M].北京:航空工业出版社,1998.
    [12]金捷,王方,刘邓欢,等.内置油杆的凹腔支板火焰稳定器:104373964[P].2016-08-17.
    [13]DEZUBAY E A.Characteristics of disk-controlled flames[J].Aero Digest,1950,61(1):54-56.
    [14]LONGWELL J P.Flame stabilization by bluff bodies and turbulent flames in ducts[J].Proceedings of the Combustion Institute,1953,4(1):90-97.
    [15]ZUKOSKI E E.Flame stabilization on bluff bodies at low and intermediate Reynolds numbers[D].[S.l.]:California Institute of Technology,1954.
    [16]罗莲军.凹腔支板稳定器燃烧性能研究[D].北京:北京航空航天大学,2012.LUO Lianjun.Research on combustion performance of cavity-based strut flame stabilizer[D].Beijing:Beijing University of Aeronautics and Astronautics,2012.(in Chinese)
    [17]周冠宇.新型火焰稳定器的实验研究[D].北京:北京航空航天大学,2011.ZHOU Guanyu.Experimental study of new-type flame stabilizer[D].Beijing:Beijing University of Aeronautics and Astronautics,2011.(in Chinese)
    [18]谢奕,刘玉英.组合式风斗混合器掺混性能数值研究[J].推进技术,2016,37(3):546-553.XIE Yi,LIU Yuying.Numerical simulation on mixing performance of combined wind scoop mixer[J].Journal of Propulsion Technonlgy,2016,37(3):546-553.(in Chinese)
    [19]黄勇,林宇震,樊未军,等.燃烧与燃烧室[M].北京:北京航空航天大学出版社,2009.
    [20]钱佳兴.加温条件下支板稳定器雾化性能研究[D].北京:北京航空航天大学,2014.QIAN Jiaxing.Investigation on the spray performance of strut flameholder in preheated air flow[D].Beijing:Beijing University of Aeronautics and Astronautics,2014.(in Chinese)
    [21]BALLAL D R,LEFEBVRE A H.Weak extinction limits of turbulent flowing mixtures[J].Journal of Engineering for Gas Turbines and Power,1979,101(3):343-348.
    [22]LONGWELL J P,FROST E D,WEISS M A.Flame stability in body recirculation[J].Industrial and Engineering Chemistry Research,1953,45(8):1629-1633.
    [23]LEFEBVRE A H.Fuel effects on gas turbine combustionignition,stability,and combustion efficiency[J].Journal of Engineering for Gas Turbines and Power,1985,107(1):24-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700