5×5棒束通道中简单支撑格架对流动过冷沸腾传热的影响分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Simple Support Grid on Heat Transfer Characteristic in PSBT 5×5 Rod Bundle under Subcooled Flow Boiling
  • 作者:张君毅 ; 闫晓 ; 肖泽军
  • 英文作者:ZHANG Junyi;YAN Xiao;XIAO Zejun;CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology,Nuclear Power Institute of China;Hualong Pressurized Water Reactor Technology Corporation,Ltd.;
  • 关键词:PSBT基准题 ; 过冷沸腾 ; 简单支撑格架 ; 传热特性
  • 英文关键词:PSBT;;subcooled flow boiling;;simple support grid;;heat transfer characteristic
  • 中文刊名:YZJS
  • 英文刊名:Atomic Energy Science and Technology
  • 机构:中国核动力研究设计院中核核反应堆热工水力技术重点实验室;华龙国际核电技术有限公司;
  • 出版日期:2018-07-24 10:42
  • 出版单位:原子能科学技术
  • 年:2018
  • 期:v.52
  • 基金:国家自然科学基金资助项目(51406189)
  • 语种:中文;
  • 页:YZJS201809010
  • 页数:9
  • CN:09
  • ISSN:11-2044/TL
  • 分类号:78-86
摘要
采用壁面热分配模型(即RPI模型)对PSBT基准题中的5×5均匀加热全长棒束过冷沸腾传热进行了数值模拟研究。重点分析了加热段末端搅混格架(MVG)下游简单支撑格架(SSG)对棒束通道内流动过冷沸腾传热特性的影响。在水力特性方面,研究发现SSG的形阻压降约为MVG的53%,且对棒束通道内的横向流动具有显著抑制作用。为反映SSG对搅混过程的影响,采用子通道平均横流速度比沿轴向的发展过程对其进行了分析。分析发现,在SSG附近横流速度比迅速衰减,衰减后的横流速度比与光棒束时的大小相当。由于SSG对横流过程的破坏,改变了发热表面的传热特性,在其下游气相迅速包覆加热表面,蒸发热流密度较无SSG情况偏高5%,加热段末端空泡份额偏高0.006,壁面过热度偏高0.3℃。
        Subcooled boiling heat transfer simulation of PSBT full scale 5×5 rod bundle with uniform-axial power distribution(APD)was carried out with wall heat flux partition method(RPI model).In this study,the influence of simple support grid(SSG)on hydraulic and heat transfer characteristics under subcooled flow boiling within the last span of the bundle was concerned.It is found that the pressure drop of SSG form loss can be up to 53% of mixing vane grid(MVG).The transverse flow induced by theMVG is suppressed by the SSG,which leads a reduction of transverse velocity ratio to that of the bare bundle.Attributed to the rapid declining of transverse flow,the heat transfer decreases.At the downstream of SSG,compared with the bundle excluding a SSG at the last span,the evaporation heat flux increases by 5%,the bundle average void fraction increases by 0.006 with a rising of wall superheating by 0.3 ℃.
引文
[1]ANGLART H,NYLUND O.CFD application to prediction of void distribution in bubbly flows in rod bundles[J].Nuclear Engineering and Design,1996,163:81-98.
    [2]ANGLART H,NYLUND O,KURUL N,et al.CFD prediction of flow and phase distribution in fuel assemblies with spacers[J].Nuclear Engineering and Design,1997,177:215-228.
    [3]KREPPER E,KONCAR B,EGOROV Y.CFD modeling of subcooled boiling:Concept,validation and application to fuel assembly design[J].Nuclear Engineering and Design,2007,237(7):716-731.
    [4]TATIANA S.Two-phase CFD analyses in fuel assembly sub-channels of pressurized water reactors under swirl conditions[D].Germany:Dresden University of Technology,2009.
    [5]LO S,OSMAN J.CFD modeling of boiling flow in PSBT 5×5bundle[J].Science and Technology of Nuclear Installations,2012,Article ID795935.
    [6]YAN J,SMITH L D,Ⅲ,KAROUTAS Z.Departure from nucleate boiling modeling development for PWR fuel[C]∥Proceeding of the 201321st International Conference on Nuclear Engineering(ICONE-21).Chengdu,China:[s.n.],2013.
    [7]YAN J,YUAN P,JOFFRE P F,et al.CHF model development in Westinghouse[C]∥International Semina on Subchannel Analysis CFD Modeling and Verification,CHF Experiment and Benchmarking(ISACC-2013).Xi’an,China:[s.n.],2013.
    [8]晁嫣萌,杨立新,庞铮铮,等.燃料组件5×5格架多跨模型CFD模拟方法研究[J].原子能科学技术,2014,48(5):827-835.CHAO Yanmeng,YANG Lixin,PANG Zhengzheng,et al.CFD simulation study on 5×5multi-span spacer grids of fuel assembly[J].Atomic Energy Science and Technology,2014,48(5):827-835(in Chinese).
    [9]张汇,杨保文,韩斌,等.过冷沸腾工况下不同刚凸结构对定位格架热工水力性能影响的数值模拟分析[C]∥第十四届全国反应堆热工流体学术会议/中核核反应堆热工水力技术重点实验室2015年度学术年会.成都:中核核反应堆热工水力技术重点实验室,2015.
    [10]张蕊,干富军,左巧林,等.压水堆燃料棒束通道内过冷沸腾分析[J].原子能科学技术,2015,49(9):1 579-1 585.ZHANG Rui,GAN Fujun,ZUO Qiaolin,et al.Analysis of subcooled boiling in PWR rod bundle channel[J].Atomic Energy Science and Technology,2015,49(9):1 579-1 585(in Chinese).
    [11]杨保文,韩斌,张汇,等.交混翼定位格架关键部件——交混翼角度/刚凸形状数值模拟研究[J].核动力工程,2016,37(2):165-170.YANG Baowen,HAN Bin,ZHANG Hui,et al.CFD analysis on key component of mixing vane grids—Vane angle/dimple shape[J].Nuclear Power Engineering,2016,37(2):165-170(in Chinese).
    [12]肖毅.带格架燃料组件复杂流动和传热特性的数值模拟研究[D].重庆:重庆大学动力工程学院,2016.
    [13]周梦君.定位格架结构特征对子通道热工水力特性影响数值模拟研究[D].北京:北京交通大学机械与电子控制工程学院,2017.
    [14]王海松,冷洁,刘绍强,等.不同搅浑翼定位格架5×5棒束通道内流动与传热特性数值研究[J].热科学与技术,2017,16(3):187-192.WANG Haisong,LENG Jie,LIU Shaoqiang,et al.Numerical investigation of flow and heat transfer characteristics in 5×5rod bundles with difference spacer grids[J].Journal of Thermal Science and Technology,2017,16(3):187-192(in Chinese).
    [15]HORI K.Total evaluation of bundle void fraction measurement test of PWR fuel assembly[C]∥International Conference on Nuclear Engineering.New Orleans,LA,USA:ASME,1996.
    [16]RUBIN A,SCHOEDEL A,AVRAMOVA M,et al.OECD/NRC Benchmark based on NUPEC PWR subchannel and bundle tests(PSBT),VolumeⅠ:Experimental database and final problem specifications[R].USA:NRC,OECD Nuclear Energy Agency,2010.
    [17]KURUL N,PODOWSKI M Z.Multidimensional effects in forced convection subcooled boiling[C]∥Proceedings of the 9th International Heat Transfer Conference.Jerusalem,Israel:Hemisphere Publishing Corporation,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700