低空浮空器温度场数值计算研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Study on Temperature Field of Low-altitude Aerostat
  • 作者:刘帅 ; 鲁国富 ; 揭得算 ; 朱仁胜 ; 符文贞
  • 英文作者:LIU Shuai;LU Guofu;JIE Desuan;ZHU Rensheng;FU Wenzhen;Hefei University of Technology,School of Mechanical Engineering;AVIC Special Vehicle Research Institute,The R&D Center of Aerostat and Ground Effect Vehicle;AVIC Special Vehicle Research Institute,Aviation Key Laboratory of Science and Technology on Structural Corrosion Prevention and Control;Hefei University of Technology,School of Automobile and Transportation Engineering;
  • 关键词:浮空器 ; 计算流体力学 ; Fluent ; 耦合计算 ; 数值仿真 ; 温度场
  • 英文关键词:aerostat;;computational fluid dynamics;;Fluent;;coupling calculation;;numerical simulation;;temperature field
  • 中文刊名:JXGU
  • 英文刊名:Mechanical Engineer
  • 机构:合肥工业大学机械工程学院;中航工业特种飞行器研究所浮空器与地效飞行研究中心;中航工业特种飞行器研究所结构腐蚀防护与控制航空科技重点实验室;合肥工业大学汽车与交通工程学院;
  • 出版日期:2019-04-10
  • 出版单位:机械工程师
  • 年:2019
  • 期:No.334
  • 基金:工信部民机科研项目(MJ-2016-F-09);; 合肥工业大学博士专项科研资助基金(JZ2017HGBZ0927)
  • 语种:中文;
  • 页:JXGU201904018
  • 页数:4
  • CN:04
  • ISSN:23-1196/TH
  • 分类号:54-56+60
摘要
浮空器工作过程中的温度场变化对其运行及控制等方面会产生重要影响。基于武汉市夏至日低空气象资料,运用计算流体力学软件Fluent及其提供的UDF接口,对浮空器内、外流场及温度场进行耦合计算。通过数值仿真得到浮空器蒙皮与内置氦气囊及内部气体的三维温度场。通过分析三维温度场变化情况,可知浮空器外部蒙皮材料局部温度受耦合传热影响变化明显,内部气体和内置氦气囊温度变化较小。
        Temperature field changes during the operation of aerostats can have an important impact on their operation and control. Based on the low altitude meteorological data(atmospheric temperature, radiation, wind speed, air pressure,etc.)of the summer solstice day in Wuhan, the computational fluid dynamics software Fluent and its UDF(user-defined function)interface are used to carry out the coupling calculation of the internal flow field, external flow field, temperature field in the aerostat. The three-dimensional temperature field of the aerostat skin and the built-in helium balloon and internal gas is obtained by numerical simulation. By analyzing the variation of the three-dimensional temperature field, it can be seen that the local temperature of the outer skin material of the aerostat is significantly affected by the coupling heat transfer, and the temperature changes of the internal gas and the built-in helium balloon are small.
引文
[1] DOLCE J L, COLLOZZA A. High-Altitude, Long-Endurance Airships for Coastal Surveillance[R]. Nasa Technical Report,2005.
    [2] DAI Q, FANG X, LI X, et al. Performance simulation of high altitude scientific balloons[J]. Advances in Space Research,2012, 49(6):1045-1052.
    [3] STEFAN K. Thermal effects on a high altitude airship[C]//Lighter-Than Air Conference. 1983.
    [4] CATHEY H J. Advances in the thermal analysis of scientific balloons[M]//Thermal analysis in the geosciences. SpringerVerlag, 2006:393-394.
    [5]朱仁胜,张月,周隐.恒温条件下浮空气囊泄漏仿真[J].机械设计与制造,2018(2):91-93.
    [6] HENZE M, WEIGAND B, WOLFERSDORF J V. Natural convection inside airships[C]//AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2006:219-223.
    [7]方贤德,王伟志,李小建.平流层飞艇热仿真初步探讨[J].航天返回与遥感,2007,28(2):5-9.
    [8]徐向华,程雪涛,梁新刚.平流层浮空器的热数值分析[J].清华大学学报(自然科学版),2009(11):1848-1851.
    [9]程雪涛,徐向华,梁新刚.低空环境中浮空器的热数值模拟与实验研究[J].宇航学报,2010,31(10):2417-2421.
    [10] DAI Q, FANG X, XU Y. Numerical study of forced convective heat transfer around a spherical aerostat[J]. Advances in Space Research, 2013, 52(12):2199-2203.
    [11]于勇.FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008.
    [12]张奕,郭恩震.传热学[M].南京:东南大学出版社,2004.
    [13]章熙民,任泽霈.传热学[M].北京:中国建筑工业出版社,2004.
    [14] HOTTEL H C. A simple model for estimating the transmittance of direct solar radiation through clear atmospheres[J]. Solar Energy, 1976, 18(2):129-134.
    [15] LIU B Y H, JORDAN R C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar Energy, 1960, 4(3):1-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700