六自由度摇摆台反解建模与仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Anti-solution modeling and simulation of 6-DOF swing platform
  • 作者:梁东生 ; 王利娟 ; 冯兆缘
  • 英文作者:LIANG Dongsheng;WANG Lijuan;FENG Zhaoyuan;Zhenjiang Siyang Diesel Engine Manufacturing Co. Ltd.,Jiangsu University of Science and Technology;School of Energy and Power Engineering,Jiangsu University of Science and Technology;
  • 关键词:六自由度摇摆台 ; 运动反解 ; MATLAB/Simulink
  • 英文关键词:6-DOF swing platform;;reversal of sport;;MATLAB/simulation
  • 中文刊名:HDCB
  • 英文刊名:Journal of Jiangsu University of Science and Technology(Natural Science Edition)
  • 机构:江苏科技大学镇江四洋柴油机制造有限公司;江苏科技大学能源与动力工程学院;
  • 出版日期:2018-12-15
  • 出版单位:江苏科技大学学报(自然科学版)
  • 年:2018
  • 期:v.32;No.171
  • 基金:江苏省重点研发计划项目(BE2015133)
  • 语种:中文;
  • 页:HDCB201806008
  • 页数:5
  • CN:06
  • ISSN:32-1765/N
  • 分类号:45-48+143
摘要
六自由度摇摆台(6-DOF)在模拟自然界空间位置起伏变化中发挥重要作用,具有非线性、强耦合、多变量特点,分析六自由度并联摇摆台运动特性和液压缸的缸长变化规律,更好地完善其控制策略,从而达到控制性能的目标,获得良好的控制效果.文中通过反解算法,推导6-DOF位姿,在MATLAB/Simulink中对摇摆台位姿进行反解建模与仿真分析,获得了液压缸的缸长变化曲线,并与试验台监控的液压缸长度进行对比,验证了反解算法的实用性,对6-DOF控制系统的建立提供重要的参考价值.
        The 6-DOF plays an important role in simulating the fluctuation of spatial position in nature,and has the characteristics of nonlinear,strong coupling and multivariable. The kinematic characteristics of the six-degree-of-freedom parallel rocking table and the variation law of cylinder length are analyzed. It can improve the control strategy,achieve the goal of control performance and obtain good control effect. In this paper,the 6-dof pose was deduced through the reverse solution algorithm. In MATLAB/Simulink,the inverse solution modeling and simulation analysis were performed to obtain the change curve of the cylinder length of the hydraulic cylinder. Compared with the length of hydraulic cylinder monitored by the test bed,the practicability of the inverse solution algorithm is verified,which is of great reference value for the establishment of 6-dof control system.
引文
[1]张涵洁,万小金,李清蕾,等.8-SPU冗余机构大工作空间/杆长行程优化分析[J].机械传动,2018,42(1):52-56.
    [2]李爱民.一种三自由度Stewart并联平台重心稳定分析及Simulink仿真[J].机床与液压,2018,46(3):50-53.DOI:10.3969/j.issn.1001-3881.2018.03.013.LI Aimin.Stability analysis and simulink simulation of a 3-DOF stewart parallel platform with stable center of gravity[J].Machine Tool&Hydraulics,2018,46(3):50-53.DOI:10.3969/j.issn.1001-3881.2018.03.013.(in Chinese)
    [3]武洋.基于AD5436的六自由度并联机器人半实物仿真[J].机械工业标准化与质量,2018(3):32-38.
    [4]沈洲,朱晓民,曹宇昕.Stewart型六自由度运动平台反解算法研究[J].液压气动与密封,2017,37(7):51-55.DOI:10.3969/j.issn.1008-0813.2017.07.016.SHEN Zhou,ZHU Xiaomin,CAO Yuxin.Research of inverse solution algorithm for a 6-DOF stewart motion platform[J].Hydraulics Pneumatics&Seals,2007,37(7):51-55.DOI:10.3969/j.issn.1008-0813.2017.07.016.(in Chinese)
    [5]林文强,卢均山,周生浩.六自由度振动平台的位姿解算与路谱模拟分析[J].机床与液压,2017,45(15):109-112.DOI:10.3969/j.issn.1001-3881.2017.15.028.LIN Wenqiang,LU Junshan,ZHOU Shenghao.Solution of position and pose of 6-DOF vibration platform and analysis of road spectrum simulation[J].Machine Tool&Hydraulics,2017,45(15):109-112.DOI:10.3969/j.issn.1001-3881.2017.15.028.(in Chinese)
    [6]陈宁,魏亮.海浪模拟视觉仿真系统与并联六自由度平台控制系统的数据通信[J].江苏科技大学学报(自然科学版),2017,31(4):495-500,507.DOI:10.3969/j.issn.1673-4807.2017.04.016.CHEN Ning,WEI Liang.The data communication of the wave visual simulation system and the control system of 6-DOF parallel platform[J].Journal of Jiangsu University of Science and Technology(Natural Science Edition),2017,31(4):495-500,507.DOI:10.3969/j.issn.1673-4807.2017.04.016.(in Chinese)
    [7]杨靖一,黄山云,丁祝顺,等.基于模糊PID算法的六自由度并联机构控制研究[J].导航与控制,2017,16(5):33-39,62.DOI:10.3969/j.issn.1674-5558.2017.05.006.YANG Jingyi,HUANG Shanyun,DING Zhushun,et al.Research on the controller of a 6-DOF parallel platform based on the fuzzy PID strategy[J].Navigation and Control,2017,16(5):33-39,62.DOI:10.3969/j.issn.1674-5558.2017.05.006.(in Chinese)
    [8]刘兴芳.六自由度并联平台的运动学分析与结构参数优化[D].太原:中北大学,2018.
    [9]蒋星韬.基于单应性的六自由度飞行平台视觉控制[D].天津:天津大学,2017.
    [10]李烁.沉船同步提升液压升沉补偿试验平台设计[D].大连:大连海事大学,2018.
    [11]张尚盈,赵慧,韩俊伟.六自由度运动平台实时控制的正/反解算法[J].机床与液压,2003(3):133-135,123.DOI:10.3969/j.issn.1001-3881.2003.03.053.ZHANG Shangying,ZHAO Hui,HAN Junwei.Direct and reverse algorithms for real-time control of 6-DOFplatform[J].Machine Tool&Hydarulics,2003(3):133-135,123.DOI:10.3969/j.issn.1001-3881.2003.03.053.(in Chinese)
    [12]晁智强,郭小牛,刘相波,等.六自由度运动平台位置反解的建模与仿真研究[J].流体传动与控制,2010(6):38-40.DOI:10.3969/j.issn.1672-8904.2010.06.012.ZHAO Zhiqiang,GUO Xiaonu,LIU Xiangbo,et al.Modeling and simulation studies of inverse kinematics of 6-DOF hydraulic platform[J].Fluicl Power Transmission and Control,2010(6):38-40.DOI:10.3969/j.issn.1672-8904.2010.06.012.(in Chinese)
    [13]孙石磊,刘芳华,梁伟,等.一种复合式6-SPS舰载抗冲稳定平台的机械结构设计及性能分析[J].江苏科技大学学报(自然科学版),2018,32(4):521-527.DOI:10.11917/j.issn.1673-4807.2018.04.012.SUN Shilei,LIU Fanghua,LIANG Wei,et al.Mechanical structure design and performance analysis of a compound 6-SPS ship resistance and stable platform[J].Journal of Jiangsu University of Science and Technology(Natural Science Edition),2018,32(4):521-527.DOI:10.11917/j.issn.1673-4807.2018.04.012.(in Chinese)
    [14]TUNC Taner,SHAW Jay.Investigation of the effects of Stewart platform-type industrial robot on stability of robotic milling[J].International Journal of Advanced Manufacturing Technology,2016,87(1-4).DOI:10.1007/s00170-016-8420-z.
    [15]胡雄,汪超,唐刚.基于STM32的六自由度平台的姿态测量系统设计[J].东华大学学报(自然科学版),2016,42(4):597-603.DOI:10.3969/j.issn.1671-0444.2016.04.027.HU Xiong,WANG Chao,TANG Gang.A six degrees of freedom platform attitude measurement system design based on STM32[J].Journal of Donghua University(Natural Science Edition),2016,42(4):597-603.DOI:10.3969/j.issn.1671-0444.2016.04.027.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700