溃决型黏性泥石流冲击下大颗粒堰塞坝溃决流量计算方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on method for calculation of breaching discharge of large particle-sized landslide-dam under impact of breaching and viscous debris flow
  • 作者:李俊 ; 陈宁生 ; 赵苑迪
  • 英文作者:LI Jun;CHEN Ningsheng;ZHAO YuANDi;School of Civil Engineering,Sichuan University of Science & Engineering;Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing;Institute of Mountain Hazards and Environment,CAS;
  • 关键词:溃决型黏性泥石流 ; 溃决流量 ; 堵溃模型 ; 大颗粒堰塞坝 ; 震后地区 ; 工程地质灾害防治 ; 山地灾害形成机理
  • 英文关键词:breaching and viscous debris flow;;breaching discharge;;breach-blocking model;;large particle-sized landslide-dam;;earthquake region;;prevention and control of engineering geological disaters;;formation mechanism of mountain hazards
  • 中文刊名:SJWJ
  • 英文刊名:Water Resources and Hydropower Engineering
  • 机构:四川理工学院土木工程学院;桥梁无损检测与工程计算四川省高校重点实验室;中国科学院水利部成都山地灾害与环境研究所;
  • 出版日期:2018-12-20
  • 出版单位:水利水电技术
  • 年:2018
  • 期:v.49;No.542
  • 基金:国家自然科学基金项目(41661134012,41671112);; 四川省安全生产科技项目(aj20170601105926);; 桥梁无损检测与工程计算四川省高校重点实验室2016年开放基金课题(2016QYY02);; 四川理工学院人才引进项目(2018RCL09)
  • 语种:中文;
  • 页:SJWJ201812023
  • 页数:8
  • CN:12
  • ISSN:11-1757/TV
  • 分类号:172-179
摘要
震后环境下大颗粒堰塞坝溃决流量是设计溃决型黏性泥石流防治工程的关键参数。在宽顶堰流量计算公式的基础上,结合水静力学和流体力学,建立估算大颗粒堰塞坝溃决流量的堵溃模型。为解决如何确定堵溃模型中堵塞系数ω这一难点,通过多处溃决型黏性泥石流典型案例,回归分析堵塞系数ω与最大颗粒直径D的相互关系。最后采用2013年7月13日汶川县七盘沟溃决型黏性泥石流案例检验大颗粒堰塞坝堵溃模型适用性。结果表明:溃决流量堵溃模型中堵塞系数与最大颗粒直径成正比,在泥石流实地调查中,仅需确定泥石流携带的最大颗粒尺寸、潜在堰塞坝宽度和泥石流平均流速,即可快速预测潜在泥石流堵溃点处的溃决流量;七盘沟泥石流的溃决流量估算结果误差较小,为12%,说明大颗粒堰塞坝堵溃模型可用于估算震后地区溃决型黏性泥石流中大颗粒堰塞坝的溃决流量。
        The breaching discharge of large particle-sized landslide-dam after earthquake is the key parameter for the design of the prevention project for the breaching and viscous debris flow. Based on the discharge calculation formula of broad-crest weir,a breach-blocking model for estimating the breaching discharge of large particle-sized landslide-dam is established in combination with hydrostatics and fluid mechanics. In order to solve the difficulty of how to determine the blocking coefficient ωin the breachblocking model,the correlation between the blocking coefficient ωand the diameter of the largest particle D is regressively analyzed through the typical cases of several breaching and viscous debris flows. Finally,the applicability of the breach-blocking model for the large particle-sized landslide-dam is verified with the case of Qipangou Debris Flow——a breaching and viscous debris flow occurred in Wenchuan County on July 13,2013. The result shows that the blocking coefficient in the breach-blocking model for the breaching discharge of landslide-dam is proportional to the diameter of the largest particle,thus the breaching discharge at the breach-blocking point of potential debris flow can be quickly predicted by only determining the maximum particle size carried by debris flow,the width of potential landslide and the mean flow rate of the debris flow. The error of the estimation made on the breaching discharge of Qipangou Debris Flow is relatively smaller and is 12%,which is indicated that breach-blocking model for large particle-sized landslide-dam can be applied to the estimation of the breaching discharge of the large particlesized landslide-dam within the breaching and viscous debris flows in the region after earthquake.
引文
[1]赵琰鑫.沟道泥石流运动—淤塞—堵溃数值模拟研究[D].武汉:武汉大学,2012.
    [2]崔鹏,韩用顺,陈晓清.汶川地震堰塞湖分布规律与风险计算[J].四川大学学报(工程科学版),2009,41(3):35-42.
    [3]王兆印,崔鹏,刘怀湘.汶川地震引发的山地灾害以及堰塞湖的管理方略[J].水利学报,2010,41(7):757-763.
    [4] HUGHES R,NASH D. The Gupis debris flow and natural dam,July 1980[J]. Disasters,1986,10(1):8-14.
    [5]陈宁生,高延超,李东风,等.丹巴县邛山沟特大灾害性泥石流汇流过程分析[J].自然灾害学报,2004,13(3):104-108.
    [6] COSTA J E,SCHUSTER R L. The formation and failure of natural dams[J]. Geological Society of America Bulletin,1988,100(7):1054-1068.
    [7]徐久红,黄继平,郑颖.青海玉树结古镇布庆隆沟泥石流的成因分析及危害特征[J].水利水电技术,2016,47(7):121-123.
    [8]乐茂华.强震区溃决型泥石流动力过程模拟及特征研究[D].成都:成都理工大学,2014.
    [9]陈晓清,陈宁生,崔鹏.冰川终碛湖溃决泥石流流量计算[J].冰川冻土,2004,26(3):357-362.
    [10] ZHOU G G D,CUI P,CHEN H Y,et al. Experimental study on cascading landslide dam failures by upstream flows[J]. Landslides,2013,10(5):633-643.
    [11] CUI P,ZHOU G G D,ZHU X H,et al. Scale amplification of natural debris flows caused by cascading landslide dam failures[J]. Geomorphology,2013,182:173-189.
    [12]余斌,杨永红,苏永超,等.甘肃省舟曲8. 7特大泥石流调查研究[J].工程地质学报,2010,18(4):437-444.
    [13]胡凯衡,崔鹏,马超,等.宁南县矮子沟“6. 28”特大灾害性泥石流成因和特征[J].山地学报,2012,30(6):696-700.
    [14]郝红兵,赵松江,李胜兵,等.汶川地震区特大泥石流物源集中启动模式和特征[J].水文地质工程地质,2015,42(6):159-170.
    [15]吴持恭.水力学(上册)[M].北京:高等教育出版社,1998.
    [16] SHIEH C L,CHIA-HSIEN T,HUNG-WEN P A N. Impulsive force of debris flow on a curved dam[J]. International journal of sediment research,2008,23(2):149-158.
    [17]韩文梅.岩石摩擦滑动特性及其影响因素分析[D].太原:太原理工大学,2012.
    [18]余斌.稀性泥石流容重计算的改进方法[J].山地学报,2009,27(1):70-75.
    [19]康志成,李焯芬,马蔼乃,等.中国泥石流研究[M].北京:科学出版社,2004.
    [20]陈宁生.泥石流勘查技术[M].北京:科学出版社,2011.
    [21]唐川,李为乐,丁军,等.汶川震区映秀镇“8·14”特大泥石流灾害调查[J].地球科学(中国地质大学学报),2011,36(1):172-180.
    [22]曾超,崔鹏,葛永刚,等.四川汶川七盘沟“7·11”泥石流破坏建筑物的特征与力学模型[J].地球科学与环境学报,2014,36(2):81-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700