石灰岩裂隙摩擦滑动特性试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study of frictional sliding behavior of limestone fracture
  • 作者:钟振 ; 胡云进
  • 英文作者:ZHONG Zhen;HU Yun-jin;School of Civil Engineering, Shaoxing University;Rock Mechanics Laboratory, The Pennsylvania State University;Centre of Rock Mechanics and Geological Disaster, Shaoxing University;
  • 关键词:劈裂石灰岩岩芯 ; 摩擦滑动特性 ; 摩擦强度 ; 时间依赖性 ; 滑动稳定性 ; 渗透率
  • 英文关键词:split limestone core;;frictional sliding behavior;;frictional strength;;time-dependent behavior;;sliding stability;;permeability
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:绍兴文理学院土木工程学院;美国宾夕法尼亚州立大学岩石力学实验室;绍兴文理学院岩石力学与地质灾害实验中心;
  • 出版日期:2015-11-10
  • 出版单位:岩土力学
  • 年:2015
  • 期:v.36;No.252
  • 基金:国家自然科学基金项目(No.51279177);; 浙江省公益性技术应用研究计划资助项目(No.2015C31134);; 绍兴文理学院科研启动项目(No.20145016,No.20145014)~~
  • 语种:中文;
  • 页:YTLX201511007
  • 页数:9
  • CN:11
  • ISSN:42-1199/O3
  • 分类号:49-57
摘要
为研究石灰岩裂隙的摩擦滑动特性,搭建了三轴试验系统,进行了劈裂石灰岩岩芯在湿润和干燥条件下的滑动-控制-滑动试验、速度步长试验和渗透试验。通过滑动-控制-滑动试验和速度步长试验分别研究了石灰岩裂隙摩擦强度的时间依赖性和滑动稳定性,并进一步分析了水对裂隙摩擦强度特性的影响,同时还通过渗透试验观察了裂隙渗透率在滑动过程中的变化。滑动-控制-滑动试验表明:裂隙的摩擦强度具有时间和应力依赖性,裂隙摩擦强度在控制时间内的下降量及重新滑动后的愈合量均与控制时长成正比,而与有效压应力成反比;此外,摩擦强度特性还明显受到水的影响。速度步长试验则表明:石灰岩裂隙摩擦强度随滑动速度的增加而增大,呈现速度强化特性。最后通过不同有效正应力下(介于1?3 MPa之间)的渗透试验发现:裂隙的渗透率不仅随有效应力的增加而急剧下降,而且在各级正应力下亦随滑动而逐渐减小。
        In this paper, a triaxial experimental apparatus is developed to investigate the frictional sliding behavior of fissures in limestone. Slide-hold-slide(SHS) tests, velocity stepping(VS) tests and permeability tests are conducted on the limestone core samples under both dry and wet conditions. Time-dependence and sliding stability are firstly studied through SHS tests and VS tests, respectively, and then the effect of water on the frictional behavior of fissures is further analyzed. Meanwhile, the permeability of fissures is measured during the sliding process in permeability tests. SHS tests show that frictional strength of fissures exhibits significant time- and stress- dependent behavior. The decreasing magnitude of frictional strength at the controlled time and the healing magnitude after re-sliding are proportional to the controlled time intervals, but inversely proportional to the effective confining stress. In addition, the frictional behavior is obviously influenced by water. However, VS tests demonstrate that frictional strength of limestone increases with increasing sliding velocities, which indicates the velocity-strengthening behavior. Finally, it can be seen from a series of permeability tests under varied effective normal stresses from 1 to 3 MPa is carried out, the permeability declines sharply with the increase of effective confining stress, and even decreases gradually with sliding process at each level of effective confining stress.
引文
[1]BRACE W F,BYERLEE J D.Recent experimental studies of brittle fracture of rocks[C]//The 8th U.S.Symposium on Rock Mechanics(USRMS).Minneapolis,Minnesota:American Rock Mechanics Association,1966.
    [2]SCHOLZ C H.The mechanics of earthquakes and faulting[M].Cambridge:Cambridge University Press,2002:265-273.
    [3]DIETERICH J H.Time-dependent friction in rocks[J].Journal of Geophysical Research,1972,77(20):3690-3697.
    [4]MARONE C.The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle[J].Nature,1998,391(6662):69-72.
    [5]CARPENTER B M.Fault strength and stability:Lessons learned from the San Andreas fault in central California[D].Pennsylvania:The Pennsylvania State University,2012.
    [6]周翠英,李伟科,向中明,等.水-应力作用下软岩细观结构摩擦接触分析[J].岩土力学,2015,36(9):2458-2466.ZHOU Cui-ying,LI Wei-ke,XIANG Zhong-ming,et al.Analysis of mesoscopic frictional contacts in soft rocks under water-stress interaction[J].Rock and Soil Mechanics,2015,36(9):2458-2466.
    [7]MARONE C,RALEIGH C B,SCHOLZ C H.Frictional behavior and constitutive modeling of simulated fault gouge[J].Journal of Geophysical Research(Solid Earth),1990,95(B5):7007-7025.
    [8]TADOKORO K,ANDO M,BARIS S,et al.Monitoring of fault healing after the 1999 Kocaeli,Turkey,earthquake[J].Journal of Seismology,2002,6(3):411-417.
    [9]GU J,RICE J R,RUINA A L,et al.Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction[J].Journal of the Mechanics and Physics of Solids,1984,32(3):167-196.
    [10]KARNER S L,MARONE C,EVANS B.Laboratory study of fault healing and lithification in simulated fault gouge under hydrothermal conditions[J].Tectonophysics,1997,277(1):41-55.
    [11]OLSEN M P,SCHOLZ C H,L E GER A.Healing and sealing of a simulated fault gouge under hydrothermal conditions:Implications for fault healing[J].Journal of Geophysical Research(Solid Earth),1998,103(B4):7421-7430.
    [12]TENTHOREY E,COX S F,TODD H F.Evolution of strength recovery and permeability during fluid--rock reaction in experimental fault zones[J].Earth and Planetary Science Letters,2003,206(1):161-172.
    [13]TENTHOREY E,COX S F.Cohesive strengthening of fault zones during the interseismic period:An experimental study[J].Journal of Geophysical Research(Solid Earth),2006,111(B9).
    [14]YASUHARA H,MARONE C,ELSWORTH D.Fault zone restrengthening and frictional healing:The role of pressure solution[J].Journal of Geophysical Research(Solid Earth),2005,110(B6).
    [15]NIEMEIJER A R,SPIERS C J.Velocity dependence of strength and healing behaviour in simulated phyllosilicate-bearing fault gouge[J].Tectonophysics.2006,427(1):231-253.
    [16]BOS B,SPIERS C J.Fluid-assisted healing processes in gouge-bearing faults:Insights from experiments on a rock analogue system[J].Pure and Applied Geophysics,2002,159(11-12):2537-2566.
    [17]BOS B,SPIERS C J.Effect of phyllosilicates on fluid-assisted healing of gouge-bearing faults[J].Earth and Planetary Science Letters,2000,184(1):199-210.
    [18]何昌荣,VERBERNE B A,SPIERS C.龙门山断裂带沉积岩和天然断层泥的摩擦滑动性质与启示[J].岩石力学与工程学报,2011,30(1):113-131.HE Chang-rong,VERBERNE B A,SPIERS C.Frictional properties of sedimentary rocks and natural fault gouge from Longmenshan fault zone and their implications[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(1):113-131.
    [19]IKARI M J,SAFFER D M,MARONE C.Frictional and hydrologic properties of clay-rich fault gouge[J].Journal of Geophysical Research,2009,114(B5):B5409.
    [20]缪阿丽,马胜利,侯林锋,等.岩盐断层带摩擦滑动的速度依赖性转换及其地震学意义[J].地球物理学报,2012,55(10):3307-3317.MIU A-li,MA Sheng-li,HOU Lin-feng,et al.Velocity-dependence transition of friction for halite gouge and its significance implication in seismology[J].Chinese Journal of Geophysics,2012,55(10):3307-3317.
    [21]缪阿丽,马胜利.白云母对岩盐断层带摩擦速度依赖性影响的试验研究[J].地震地质,2012,34(1):63-75.MIU A-li,MA Sheng-li.Experimental study on the influence of muscovite on velocity-dependence transition[J].Seismology and Geology,2012,34(1):63-75.
    [22]STESKY R M.The mechanical behavior of faulted rock at high temperature and pressure[D].Massachusetts:Massachusetts Institute of Technology,1975.
    [23]MITCHELL E K,FIALKO Y,BROWN K M.Temperature dependence of frictional healing of westerly granite:Experimental observations and numerical simulations[J].Geochemistry Geophysics Geosystems,2013,14(3):567-582.
    [24]BLANPIED M L,LOCKNER D A,BYERLEE J D.Frictional slip of granite at hydrothermal conditions[J].Journal of Geophysical Research,1995,100(B7):13013-13045.
    [25]BLANPIED M L,LOCKNER D A,BYERLEE J D.Fault stability inferred from granite sliding experiments at hydrothermal conditions[J].Geophysical Research Letters,1991,18(4):609-612.
    [26]谭文彬,何昌荣.高温高压及干燥条件下斜长石和辉石断层泥的摩擦滑动研究[J].地学前缘,2008,15(3):279-286.TAN Wen-bin,HE Chang-rong.Frictional sliding of pyroxene and plagioclase gouges in gabbro under elevated temperature and dry condition[J].Earth Science Frontiers,2008,15(3):279-286.
    [27]罗丽,何昌荣.热水条件下斜长石和辉石断层泥的摩擦滑动研究[J].地震地质.2009,31(1):84-96.LUO Li,HE Chang-rong.Frictional sliding of pyroxene and plagioclase gouges under hydrothermal conditions[J].Seismology and Geology,2009,31(1):84-96.
    [28]兰彩云,何昌荣,姚文明,等.热水条件下角闪石断层泥的摩擦滑动性质——与斜长石断层泥的对比[J].地球物理学报,2010,53(12):2929-2937.LAN Cai-yun,HE Chang-rong,YAO Wen-ming,et al.Frictional sliding of hornblende gouge as compared with plagioclase gouge under hydrothermal conditions[J].Chinese Journal of Geophysics,2010,53(12):2929-2937.
    [29]HICKMAN S,SIBSON R,BRUHN R.Introduction to special section:Mechanical involvement of fluids in faulting[J].Journal of Geophysical Research(Solid Earth),1995,100(B7):12831-12840.
    [30]FRYE K M,MARONE C.Effect of humidity on granular friction at room temperature[J].Journal of GeophysicalResearch(Solid Earth),2002,107(2309B11).
    [31]韩文梅.岩石摩擦滑动特性及其影响因素分析[D].太原理工大学,2012.HAN Wen-mei.The study of frictional sliding characterized of rocks and influencing factors[D].Taiyuan:Taiyuan University of Technology,2012
    [32]黄建国,张流.水对断层摩擦滑动稳定性的影响[J].地震地质,2002,24(3):387-399.HUANG Jian-guo,ZHANG Liu.The effect of water on stability of frictional sliding of fault[J].Seismology and Geology,2002,24(3):387-399.
    [33]DEWERS T,HAJASH A.Rate laws for water-assisted compaction and stress-induced water-rock interaction in sandstones[J].Journal of Geophysical Research(Solid Earth),1995,100(B7):13093-13112.
    [34]曹平,宁果果,范祥,等.不同温度的水岩作用对岩石节理表面形貌特征的影响[J].中南大学学报(自然科学版),2013,44(4):1510-1516.CAO Ping,NING Guo-guo,FAN Xiang,et al.Influence of water-rock interaction on morphological characteristic of rock joint surface at different temperatures[J].Journal of Central South University(Science and Technology),2013,44(4):1510-1516.
    [35]MCGUIRE T P.Permeability evolution of stressed fractures permeated by reactive fluids[D].Pennsylvania:The Pennsylvania State University,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700