不同摩擦系数对地铁列车曲线碰撞的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Different Friction Coefficient on Curve Collision of Subway Vehicles
  • 作者:杨皓杰 ; 肖守讷 ; 高天阳
  • 英文作者:YANG Haojie;XIAO Shoune;GAO Tianyang;State Key Laboratory of Traction Power,Southwest Jiaotong University;
  • 关键词:地铁列车 ; 摩擦系数 ; 曲线碰撞 ; 能量转化 ; 安全性
  • 英文关键词:subway vehicles;;friction coefficient;;curved collision;;energy transformation;;safety
  • 中文刊名:ZZHD
  • 英文刊名:Machine Building & Automation
  • 机构:西南交通大学牵引动力国家重点实验室;
  • 出版日期:2019-02-20
  • 出版单位:机械制造与自动化
  • 年:2019
  • 期:v.48;No.260
  • 基金:国家重点研发计划课题(2016YFB1200505-009; 2016YFB1200403-A-03)
  • 语种:中文;
  • 页:ZZHD201901006
  • 页数:4
  • CN:01
  • ISSN:32-1643/TH
  • 分类号:25-28
摘要
为分析不同摩擦系数对地铁列车曲线碰撞的影响,以某4节编组地铁列车为研究对象,建立其有限元模型。设计了动摩擦系数在0.05~0.5之间变化的6种碰撞工况,从碰撞能量转化、车辆点头姿态和车轮抬升量等方面,对地铁列车碰撞结果进行了详细的对比分析。研究结果表明,随着摩擦系数的提高,轮轨间滑移能逐渐增大,车体结构变形吸收的总内能变化不大,而防爬吸能装置和头车前端结构吸收的能量逐渐减少;碰撞能量转化、车辆点头姿态和车轮抬升量等增大或减小的趋势随摩擦系数的提高而逐渐变缓。
        To analyze the effect of different friction coefficient on curve collision of subway vehicles,this paper takes a 4-module metro train as the research object,establishes its finite element models and simulates six impact conditions with different friction coefficient with range 0.05 ~ 0.5. The results of subway train collision are compared and analyzed from some aspects,including the transformation of collision energy,the nod gesture of vehicles and the wheel vertical rise. The results show that with the increase of friction coefficient,the sliding energy increases gradually,the total internal energy of the deformation of vehicle structures substantially unchanges,the absorbed energy of anti-climbing energy devices and front end structure of head cars decreases gradually. The tendency for increase or decrease becomes slow gradually as the increase of the friction coefficient,including the transformation of collision energy,the nod gesture of vehicles and the wheel vertical rise.
引文
[1]El-Sibaie. Recent Advancements in Buff and Draft Testing Techniques[C]. Proceedings of 1993 IEEE/ASME Joint Railroad Conference. NewYork:ASME,1993:115-119.
    [2]Mayville R,Rancatore R,Tegeler L. Investigation and Simulation of Lateral Buckling in Trains[C]. Proceedings of ASME/IEEE Joint Railroad Conferece,1999.
    [3]吴克明.地铁列车连挂碰撞仿真及吸能特性分析[D].成都:西南交通大学,2014.
    [4]杜伟.重载铁路曲线内外轨摩擦系数的合理匹配研究[J].设计与研究,2013,40(2):11-15.
    [5]宋瑞.内外钢轨摩擦因数对车辆曲线通过动力学性能的影响[J].铁道车辆,2008,46(5):7-31.
    [6]曾京,胡松.轮轨摩擦碰撞及脱轨研究[J].振动工程学报,2001,14(1):1-6.
    [7]肖乾,穆命,周新建,等.高速列车轮轨材料滑动摩擦实验研究[J].华东交通大学学报,2013,30(5):24-29.
    [8]Lu G. CrashBehavior of Crashworthy Vehicles in Rakes[J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail&Rapid Transit,1999,213(3):143-160.
    [9] Lu G. EnergyAbsorption Requirement for Crashworthy Vehicles[J]. Journal of Rail&Rapid Transit,2002,216(1):31-39.
    [10]肖守讷,张志新,阳光武.列车碰撞仿真中钩缓装置模拟方法[J].西南交通大学学报,2014,49(5):831-836.
    [11]翟婉明,陈果.根据车轮抬升量评判车辆脱轨的方法与准则[J].铁道学报,2001,23(2):17-26.
    [12]向俊.列车脱轨机理与脱轨分析理论研究[D].长沙:中南大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700