青藏高原不同生境土壤细菌群落结构特征及其与环境的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship of soil bacterial community composition from different ecosystems on Qinghai-Tibet Plateau with environment factors
  • 作者:程亮 ; 王信 ; 郭青云
  • 英文作者:CHENG Liang;WANG Xin;GUO Qing-yun;Plant Protection Institute,Qinghai Academy of Agriculture and Forestry Sciences,Qinghai University;State Key Laboratory of Plateau Ecology and Agriculture,Qinghai University;Key Laboratory of Agricultural Integrated Pest Management in Qinghai Province;Soil and Fertilizer institute,Qinghai Academy of Agriculture and Forestry Sciences,Qinghai University;
  • 关键词:细菌群落 ; 高通量测序 ; 微生物-环境关系 ; 青藏高原
  • 英文关键词:bacterial community;;high-throughput sequencing;;microorganism-environment relationships;;Qinghai-Tibet Plateau
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:青海大学农林科学院植物保护研究所;青海大学省部共建三江源生态与高原农牧业国家重点实验室;青海省农业有害生物综合治理重点实验室;青海大学农林科学院土壤肥料研究所;
  • 出版日期:2019-01-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:v.37;No.172
  • 基金:青海省科技计划项目基础研究计划(2015-ZJ-705);; 青海大学中青年科研基金项目(2015-QNY-2)
  • 语种:中文;
  • 页:GHDQ201901004
  • 页数:9
  • CN:01
  • ISSN:61-1088/S
  • 分类号:24-32
摘要
为了解土壤微生物在青藏高原的分布状况及环境依赖特点,对青藏高原5种不同类型的土壤微生物群落结构、组成及其与环境关系进行了研究。通过高通量测序技术研究青藏高原不同生境土壤细菌的组成和多样性,共获得1 463 157条16S rRNA基因序列。各样品中可操作分类单元(Operational taxonomic units,OTUs)在4 344~5 764之间。土壤样品中细菌以变形菌门(35.5%)、放线菌门(20.4%)、酸杆菌门(12.5%)、拟杆菌门(7.3%)、绿弯菌门(6.1%)和厚壁菌门(5.3%)为主,其中变形菌门最为丰富。在变形菌门中,α-变形菌纲是第一大纲,占有45.9%的OTUs,其后是γ-变形菌纲和β-变形菌纲。Person相关性分析和RDA分析表明,土壤含水量、有机碳含量与钾含量对细菌群落分布起主要作用。
        To evaluate the distribution and the environmental dependence of soil microbes in arid land,we studied the composition and diversity of microbial communities in soils from different ecosystems on Qinghai-Tibet Plateau along with relevant environmental factors. The composition and diversity of Qinghai-Tibet Plateau soil bacteria were investigated by the high-throughput sequencing. Totally,1 463 157 partial 16 S rRNA gene sequences were obtained.These sequences revealed great amount of operational taxonomic units( OTUs),that is,4 344 ~ 5 764 OTUs in soil samples. There were mainly Proteobacteria( 35.5%),Actinobacteria( 20.4%),Acidobacteria( 12.5%),Bacteroidetes( 7.3%),Chloroflexi( 6.1%),and Firmicutes( 5.3%),which had the largest number of Proteobacteria. And Alphaproteobacteria with 45.9% of all OTUs was the most abundant class of Proteobacteria,followed by Gammaproteobacteria and Betaproteobacteria of this phylum. Pearson correlation and redundancy analysis revealed that soil moisture,total organic carbon,and soil potassium content had significant effect on soil bacterial community distribution.
引文
[1] Winding A,Hundrinke K,Rutgers M. The use of microorganisms inecological soil classification and assessment concepts[J]. Ecotoxicology&Environmental Safety,2005,62(2):230-248.
    [2] Jiang J,Yang B L,Lu H K,et a1. Research on the bioactive sub-stances of marine microorganisms[J]. Journal of Yunnan University(Natural Science Edition),2004,26(6A):91-95.
    [3] Liu G X,Ma X J,Chen T,et al. Progress and significance of studieson microorganisms in permafrost sediments[J]. Journal of Glaciologyand Geocryology,2004,26(2):188-191.
    [4] Li Y,Zheng C Y. The conservation of microbial species diversity andthe collection of microbial resources[J]. Amino Acids and Biotic Re-source,2003,25(3):4-6.
    [5] Arias M E,Gonzalez-Perez J A,Gonzalez-Vila F J,et al. Soil health-a new challenge for microbiologists and chemists[J]. International Mi-crobiology the Official Journal of the Spanish Society for Microbiology,2005,8(1):13-21.
    [6] Li S L,Lin Q,Li X R,et al. Biodiversity of the oleaginous microor-ganisms in Tibetan Plateau[J]. Brazilian Journal of Microbiology,2012,43(2):627-634.
    [7] Chu H Y,Fierer N,Lauber C L,et al. Soil bacterial diversity in theArctic is not fundamentally different from that found in other biomes[J]. Environmental Microbiology,2010,12(11):2998-3006.
    [8] Wu X K,Zhang W,Liu G X,et a1. Bacterial diversity in the forelandof the Tianshan No.1 glacier,China[J]. Environmental Research Let-ters,2012,7(1):14038-14046.
    [9] Zhang X F,Zhao L,Xu S J,et al. Soil moisture effect on bacterialand fungal community in Beilu River(Tibetan Plateau)permafrostsoils with different vegetation types[J]. Journal of Applied Microbiolo-gy,2013,114(4):1054-1065.
    [10] Bai Y,Yang D Q,Wang J H,et al. Phylogenetic diversity of cultur-able bacteria from alpine permafrost in the Tibetan Mountain,north-western China[J]. Research in Microbiology,2006,157(8):741-751.
    [11] Djukic I,Zehetner F,Mentler A,et al. Microbial community compo-sition and activity in different Alpine vegetation zones[J]. SoilBiology and Biochemistry,2010,42(2):155-161.
    [12] Xiong J B,Liu Y Q,Lin X G,et al. Geographic distance and p Hdrive bacterial distribution in alkaline lake sediments across TibetanPlateau[J]. Environmental Microbiology,2012,14(9):2457-2466.
    [13]张甘霖,龚子同.土壤调查实验室分析方法[M].北京:科学出版社,2012:23-76.
    [14] Liu J J,Sui Y Y,Yu Z H,et al. High throughput sequencing analy-sis of biogeographical distribution of bacterial communities in theblack soils of northeast China[J]. Soil Biology&Biochemistry,2014,70(2):113-122.
    [15] Shen C C,Xiong J B,Zhang H Y,et al. Soil p H drives the spatialdistribution of bacterial communities along elevation on ChangbaiMountain[J]. Soil Biology&Biochemistry,2013,57(00):204-211.
    [16] Guan X Y,Wang J F,Zhao H,et al. Soil bacterial communitiesshaped by geochemical factors and land use in a less-explored area,Tibetan Plateau[J]. BMC Genomics,2013,14(1):820.
    [17] Chu H Y,Sun H B,Tripathi B M,et al. Bacterial community dis-similarity between the surface and subsurface soils equals horizontaldifferences over several kilometers in the western Tibetan Plateau[J].Environmental Microbiology,2016,18(5):1523-1533.
    [18] Yuan Y L,Si G C,Wang J,et al. Bacterial community in alpinegrasslands along altitudinal gradient on the Tibetan Plateau[J].FEMS Microbiology Ecology,2014,87(1):121-132.
    [19]丛静.神农架自然保护区土壤微生物多样性研究[D].长沙:中南大学,2013.
    [20] Marschner P,Yang C,Lieberei R,et al. Soil and plant specificeffects on bacterial community composition in the rhizosphere[J]. SoilBiology and Biochemistry,2001,33(11):1437-1445.
    [21] Kowalchuk G A,Buma D S,Boer W D,et al. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms[J]. Antonie van Leeuwenhoek,2002,81(1):509-520.
    [22] Weinert N,Piceno Y,Ding G C,et al. Phylochip hybridization un-covered an enormous bacterial diversity in the rhizosphere of differentpotato cultivars:many common and few cultivar-dependent taxa[J].FEMS Microbiology Ecology,2011,75(3):497-506.
    [23] Hansel C M,Fendorf S,Jardine P M,et al. Changes in bacterial andarchaeal community structure and functional diversity along a geo-chemically variable soil profile[J]. Applied and Environmental Mi-crobiology,2008,74(5):1620-1633.
    [24] Wu T H,Dan O C,Graham J H,et al. Comparison of soil bacterialcommunities under diverse agricultural land management and cropproduction practices[J]. Microbial Ecology,2008,55(2):293-310.
    [25] Schutter M E,Sandeno J M,Dick R P. Seasonal,soil type,and al-ternative management influences on microbial communities ofvegetable cropping systems[J]. Biology and Fertility of Soils,2001,34(6):397-410.
    [26] Kennedy N,Brodie E,Connolly J,et al. Impact of lime,nitrogenand plant species on fungal community structure in grassland micro-cosms[J]. Environmental Microbiology,2005,7(10):780-788.
    [27] Yergeau E,Bokhorst S,Huiskes A H L,et al. Size and structure ofbacterial,fungal and nematode communities along an Antarctic envi-ronmental gradient[J]. FEMS Microbiology Ecology,2007,59(2):436-451.
    [28] Lauber C L,Strickland M S,Bradford M A,et al. The influence ofsoil properties on the structure of bacterial and fungal communitiesacross land-use types[J]. Soil Biology&Biochemistry,2008,40(9):2407-2415.
    [29] Lauber C L,Hamady M,Knight R,et al. Pyrosequencing-based as-sessment of soil p H as a predictor of soil bacterial communitystructure at the continental scale[J]. Applied and Environmental Mi-crobiology,2009,75(15):5111-5120.
    [30] Rousk J,Baath E,Brookes P C,et al. Soil bacterial and fungal com-munities across a p H gradient in an arable soil[J]. The ISMEJournal,2010,4(10):1340-1351.
    [31] Fierer N,Mccain C M,Meir P,et al. Microbes do not follow the ele-vational diversity patterns of plants and animals[J].Ecology,2011,92(4):797-804.
    [32] Chong C W,Pearce D A,Convey P,et al. High levels of spatial het-erogeneity in the biodiversity of soil prokaryotes on Signy Island,Ant-arctica[J]. Soil Biology and Biochemistry,2010,42(4):601-610.
    [33] Chu H Y,Neufeld J D,Walker V K,et al. The influence of vegeta-tion type on the dominant soil bacteria,archaea,and fungi in a lowarctic tundra landscape[J]. Soil Science Society of America Journal,2011,75(5):1756-1765.
    [34] Ge Y,Chen C R,Xu Z H,et al. Carbon/nitrogen ratio as a majorfactor for predicting the effects of organic wastes on soil bacterial com-munities assessed by DNA-based molecular techniques[J]. Environ-mental Science and Pollution Research,2010,17(3):807-815.
    [35] Bryant J A, Lamanna C, Morlon H, et al. Microbes onmountainsides:Contrasting elevation patterns of bacterial and plantdiversity[J]. Proceedings of the National Academy of Science of theUnited States of America,2008,105(supplement 1):11505-11511.
    [36] Singh D,Takahashi K,Kim M,et al. A Hump-Backed trend in bac-terial diversity with elevation on Mount Fuji,Japan[J].Microbial E-cology,2012,63(2):429-4437.
    [37] Shen C C,Liang W J,Shi Y,et al. Contrasting elevational diversitypatterns between eukaryotic soil microbes and plants[J]. Ecology,2014,95(11):3190-3202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700