溶剂改性氧化石墨烯(GO)杂化反渗透膜性能的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Properties of Solvent Modified Graphene Oxide Hybrid Reverse Osmosis Composite Membrane
  • 作者:孙佳楠 ; 陈可可 ; 马文韬 ; 姜熙安 ; 刘涛 ; 潘巧明
  • 英文作者:SUN Jianan;CHEN Keke;MA Wentao;JIANG Xian;LIU Tao;PAN Qiaoming;Zhejiang Institute of Mechanical & Electrical Engineering;Blustar (Hangzhou) Menbrane Industries Co., Ltd.;
  • 关键词:溶剂改性氧化石墨烯杂化反渗透膜 ; 氧化石墨烯 ; N ; N-二甲基甲酰胺 ; 浸泡 ; 水通量 ; 截留率
  • 英文关键词:solvent modified graphene oxide hybrid reverse osmosis composite membrane;;GO;;N,N-dimethylformamide;;soaking;;water flux;;retention rate
  • 中文刊名:SCLJ
  • 英文刊名:Technology of Water Treatment
  • 机构:浙江机电职业技术学院;蓝星(杭州)膜工业有限公司;
  • 出版日期:2019-03-13 10:33
  • 出版单位:水处理技术
  • 年:2019
  • 期:v.45;No.326
  • 基金:国家重点研发计划项目(2017YFC0403703);国家重点研发计划(2016YFB0600503);; 浙江省膜分离与水处理协同创新中心(SK1601)
  • 语种:中文;
  • 页:SCLJ201903016
  • 页数:5
  • CN:03
  • ISSN:33-1127/P
  • 分类号:80-84
摘要
研究了不同聚砜(PSF)底膜溶剂N,N-二甲基甲酰胺(DMF)浸泡时间、氧化石墨烯(GO)添加量对改性GO纳米杂化反渗透膜(GO-RO膜)性能的影响。结果表明,底膜在40℃、DMF质量分数30%的水溶液中浸泡50 min后,所得GO-RO膜具有较好的分离性能,水通量为85 L/(m~2·h),截留率为99.1%,水通量较底膜未浸泡的GO-RO膜提高近75%。使用浸泡50 min的底膜所制备的GO-RO膜在添加GO的质量分数为0.05%时,膜表面GO团聚较少,性能较为优良,水通量为80 L/(m~2·h),截留率为99.1%,水通量较空白对照组提高近100%。原子力显微镜分析显示,随着GO添加量的增加,膜表面粗糙度不断的增加;X射线光电子能谱仪分析显示,随着GO添加量的增加,膜分离层中GO含量也不断的增加。
        The effects of different soaking time of polysulfone(PSF) base membrane in N,N-dimethylformamide(DMF) solvent and graphene oxide(GO)dosage on the properties of modified GO nano hybrid reverse osmosis(GO-RO) membrane were studied. The results showed that, the GO-RO membrane had good separation performance after soaking for 50 min in 40 ℃ and aqueous solution with DMF mass fraction of 30%, the water flux was 85 L/(m~2·h)and the rejection rate was 99.1%, the water flux was nearly 75% higher than the GO-RO membrane with unsoaked base membrane. When the mass fraction of GO was 0.05%, the GO-RO membrane prepared by soaking for 50 min had less GO agglomeration on the surface of the membrane, and the performance was better, the water flux was 80 L/(m~2·h), and the rejection rate was 99.1%, the water flux increased by nearly 100% compared to the blank control group. AFM analysis showed that the surface roughness of the membrane increased with the increase of GO addition; XPS analysis showed that the GO content in the separation layer of the membrane also increased with the increase of GO addition.
引文
[1]ELIMELECH M,PHILLIP W A.The Future of seawater desalination:energy,technology,and the environment[J].Science,2011,333(6043):712-717.
    [2]SON S H,JEGAL J.Preparation and characterization of polyamide reverse-osmosis membranes with good chlorine tolerance[J].Journal of Applied Polymer Science,2011,120(3):1245-1252.
    [3]International Desalination Association,IDA desalination yearbook2011-2012[R].Oxford:Global Water Intelligence,Media Analytics Ltd,2011.
    [4]DUAN J,LITWILLER E,PINNAU I.Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes[J].Journal of Membrane Science,2015,473:157-164.
    [5]PERREAULT F,TOUSLEY M E,ELIMELECH M.Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets[J].Environ Sci Technol Lett,2016,1(1):71-76.
    [6]CHOI W,CHOI J,BANG J,et al.Layer-by-Layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications[J].Acs Appl Mater Interfaces,2013,5(23):12510-12519.
    [7]HUANG X,MARSH K L,MCVERRY B T,et al.Low-fouling antibacterial reverse osmosis membranes via surface grafting of graphene oxide[J].ACS Applied Materials&Interfaces,2016:acsami.6b05293.
    [8]XIA X,CHAO D,ZHANG Y,et al.Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage[J].Small,2016,12(22):3048-3058.
    [9]SON D R,RAGHU A V,REDDY K R,et al.Compatibility of thermally reduced graphene with polyesters[J].Journal of Macromolecular Science,Part B,2016,55(11):12.
    [10]REDDY K R,SIN B C,RYU K S,et al.In situ self-organization of carbon black-polyaniline composites from nanospheres to nanorods:Synthesis,morphology,structure and electrical conductivity[J].Synthetic Metals,2009,159(19):1934-1939.
    [11]HASSAN M,HAQUE E,REDDY K R,et al.Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance[J].Nanoscale,2014,6(20):11988-11994.
    [12]REDDY K R,SIN B C,YOO C H,et al.A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles[J].Scripta Materialia,2008,58(11):1010-1013.
    [13]RAGHAVA R K,GOMES V G,HASSAN M.Carbon functionalized TiO2nanofibers for high efficiency photocatalysis[J].Materials Research Express,2014,1(1):015012.
    [14]Sabine F,Rainer K,Nielsen J.Synthesis of metal(Fe or Pd)/alloy(FePd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites byγirradiation[J].Journal of Polymer Science Part A Polymer Chemistry,2010,44(10):3355-3364.
    [15]KHAN M U,REDDY K R,SNGUANWONGCHAI T,et al.Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization[J].Colloid and Polymer Science,2016,294(10):1599-1610.
    [16]REDDY K R,HASSAN M,GOMES V G.Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis[J].Applied Catalysis A General,2015,489:1-16.
    [17]CAKICI M,KAKARLA R R,ALONSOMARROQUIN F.Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2structured electrodes[J].Chemical Engineering Journal,2017,309:151-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700