无人机编队协同追踪控制律和编队信息架构
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of Tracking Control Laws and Information Architecture for Cooperative Formation of Unmanned Aerial Vehicles
  • 作者:张佳龙 ; 闫建国 ; 肖冰 ; 吕茂隆
  • 英文作者:ZHANG Jialong;YAN Jianguo;XIAO Bing;Lü Maolong;School of Automation, Northwestern Polytechnical University;College of Equipment Management and Safety Engineering, Air Force Engineering University;
  • 关键词:无人机编队 ; 信息架构 ; 矢量场 ; 多变量控制器 ; 稳定性分析
  • 英文关键词:unmanned aerial vehicles cooperative formation;;information architecture;;vector potential field;;multiple variables controller;;stability analysis
  • 中文刊名:XAJT
  • 英文刊名:Journal of Xi'an Jiaotong University
  • 机构:西北工业大学自动化学院;空军工程大学装备管理与安全工程学院;
  • 出版日期:2019-03-04 10:50
  • 出版单位:西安交通大学学报
  • 年:2019
  • 期:v.53
  • 基金:国家自然科学基金资助项目(61873207);; 西北工业大学博士论文创新基金资助项目(CX201955)
  • 语种:中文;
  • 页:XAJT201906018
  • 页数:8
  • CN:06
  • ISSN:61-1069/T
  • 分类号:140-147
摘要
针对"长机-僚机"模式的无人机编队追踪运动目标出现姿态信息和位置信息不一致而导致碰撞的问题,设计了一种协同追踪控制器并对该控制器进行稳定性分析。该控制器以3架无人机构成的编队作为控制体,采用拉氏矢量场方法获取无人机编队追踪运动目标的轨迹,同时构建无人机之间的信息架构,实现无人机编队按照预期的姿态和位置信息在运动目标周围的圆形轨道飞行的目的。研究单架无人机的航迹规划和多无人机编队协同追踪:对于单架无人机的航迹规划,采用反馈控制完成航向收敛证明;对于多无人机编队,采用一种多变量控制器可以保持无人机编队在圆形轨道运动,同时使用未知风和运动目标的自适应估计量来确定无人机编队在圆形轨道飞行的稳定性。仿真结果表明:在追踪过程中,3架无人机能够快速(15 s)以相同的姿态和位置渐进靠近目标,同时保持相对稳定;在满足航向速率和空速条件时,任意两架无人机相对距离误差能够快速(10 s)收敛到稳定值。该控制器突破了多无人机编队近距协同追踪目标的局限,可为多无人机分布式控制器设计提供方法借鉴。
        A UAV cooperative formation tracking controller is designed to address collisions between unmanned aerial vehicles(UAVs) due to the inconsistent information of attitude and position when they track a moving target, and the flight-stability of the designed controller is analyzed. The path planning of a single UAV and the orbit of a multi-UAV cooperative formation tracking a moving target are studied. A feedback control is used to ensure heading convergence for the path planning of a single UAV. Moreover, a guidance vector field method is proposed to achieve heading convergence, and it is able to analyze and solve the collision problem between the UAVs. Further, a multiple variables controller is used to maintain the cooperative UAV formation in a circular orbit during flight, and adaptive estimations for unknown wind conditions and moving targets are used to determine the flight stability of the formation in the circular orbit. Simulation results show that a formation of three UAVs rapidly get close to a target with the same attitude and position while remaining relatively stable, and the relative distance error between any two UAVs rapidly converges to the stable value in the case of unknown wind conditions and moving targets. This study provides an effective way for closely and cooperatively tracking target, and facilitates multi-UAV distributed controller design.
引文
[1] OH K K,PARK M C,AHN H S.A survey of multi-agent formation control [J].Automatica,2015,53,(C):424-440.
    [2] BRANDAO A S,SARCINELLI-FILHO M.On the guidance of multiple UAV using a centralized formation control scheme and Delaunay triangulation [J].Journal of Intelligent and Robotic Systems,2016,84(1/2/3/4):397-413.
    [3] 明平松,刘建昌.随机多智能体系统一致稳定性分析 [J].控制与决策,2016,31(3):385-393.MING Pingsong,LIU Jianchang.Consensus stability analysis of stochastic multi-agent systems [J].Control and Decision,2016,31(3):385-393.
    [4] ITO F S C,FILHO L C Q,INOUE R S,et al.Cooperative UAV formation control simulated in X-plane [C]//Proceedings of the 2017 International Conference on Unmanned Aircraft Systems.Piscataway,NJ,USA:IEEE,2017:1522-1529.
    [5] 张亚霄,陈阳舟.时变时滞与切换有向通信拓扑协议下线性多智能体系统一致性的平均驻留时间条件 [J].控制与决策,2016,31(2):349-354.ZHANG Yaxiao,CHEN Yangzhou.Average dwell-time condition for consensus of linear multi-agent systems with time-varying delay and switching directed communication topologies protocol [J].Control and Decision,2016,31(2):349-354.
    [6] CHAI Y,CAO K C.Distributed UAV formation control with two-hop relay protocol [C]//Proceedings of the 36th Chinese Control Conference.Piscataway,NJ,USA:IEEE Computer Society,2017:8707-8712.
    [7] GARCIA E,CASBEER D W.Cooperative task allocation for unmanned vehicles with communication delays and conflict resolution [J].Journal of Aerospace Computing Information & Communication,2015,13(2):1-13.
    [8] 邵壮,祝小平,周洲,等.三维动态环境下多无人机编队分布式保持控制 [J].控制与决策,2016,31(6):1065-1072.SHAO Zhuang,ZHU Xiaoping,ZHOU Zhou,et al.Distributed formation keeping control of UAVs in 3-D dynamic environment [J].Control and Decision,2016,31(6):1065-1072.
    [9] DORFLER F,FRANCIS B.Geometric analysis of the formation problem for autonomous robots [J].IEEE Transactions on Automatic Control,2010,55(10):2379-2384.
    [10] FU Yu,WANG Xiangke,ZHU Huayong,et al.Parameters optimization of multi-UAV formation control method based on artificial physics [C]//Proceedings of the 35th Chinese Control Conference.Piscataway,NJ,USA:IEEE Computer Society,2016:2614-2619.
    [11] 周绍磊,康宇航,郭志强,等.具有通信时延下多无人机编队控制 [J].科技导报,2017,35(7):77-82.ZHOU Shaolei,KANG Yuhang,GUO Zhiqiang,et al.Formation control of multiple UAVs with communication delays [J].Science and Technology Review,2017,35(7):77-82.
    [12] FU Yu,WANG Xiangke,HUAN Liu,et al.Multi-UAV formation control method based on modified artificial physics [C]//Proceedings of the 28th Chinese Control and Decision Conference.Piscataway,NJ,USA:IEEE,2016:2523-2529.
    [13] YU Xiang,LI Peng,ZHANG Youmin.Fault-tolerant control design against actuator faults with application to UAV formation flight [C]//Proceedings of the 36th Chinese Control Conference.Piscataway,NJ,USA:IEEE,2017:7167-7171.
    [14] ZHU Xu,YAN Maode,ZHANG Changli,et al.UAV formation collision avoidance control method based on improved artificial potential field [J].Journal of Harbin Engineering University,2017,38(6):961-968.
    [15] FREW E W,LAWRENCE D A,MORRIS S,et al.Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields [J].Journal of Guidance Control and Dynamics,2008,31(2):290-306.
    [16] 杨盛毅,刘超,唐胜景,等.基于动态逆和动态滑模的双通道机动飞行控制 [J].系统仿真学报,2018,30(1):156-163.YANG Shengyi,LIU Chao,TANG Shengjing,et al.Dual channel maneuver flight control based on dynamic inverse and dynamic sliding mode [J].Journal of System Simulation,2018,30(1):156-163.
    [17] ARANDA M,ARAGüéS R,LóPEZ-NICOLáS G,et al.Connectivity-preserving formation stabilization of unicycles in local coordinates using minimum spanning tree [C]//Proceedings of the 2016 American Control Conference.Piscataway,NJ,USA:IEEE,2016:1968-1974.
    [18] YU Xiao,XU Xiang,LIU Lu,et al.Circular formation of networked dynamic unicycles by a distributed dynamic control law [J].Automatica,2018,89:1-7.
    [19] TANABE S.The development of a UAV control system by using a two-dimensional code [J].Special Paper of the Geological Society of America,2016,404(8):105-128.
    [20] HERTZ F R.Global rigidity of certain Abelian actions by toral automorphisms [J].Journal of Modern Dynamics,2017,1(3):425-442.
    [21] JERMANN C,NEVEU B,TROMBETTONI G.A new structural rigidity for geometric constraint systems [M].Automated Deduction in Geometry.Berlin,Germany:Springer,2004:87-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700