负载VEGF、bFGF的聚乳酸-羟基乙酸纳米微囊复合体对放射性损伤创面愈合的作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of PLGA scaffold incorporating VEGF and bFGF loaded nanoparticles on wound healing in case of radiation injury
  • 作者:王慕 ; 曾勇 ; 张磊 ; 杨燕 ; 高明敏
  • 英文作者:WANG Mu;ZENG Yong;ZHANG Lei;YANG Yan;GAO Mingmin;Department of Plastic Surgery,Shanghai Municipal Corps Hospital,Chinese People's Armed Police Force;Department of Burn Surgery,Shanghai Municipal Corps Hospital,Chinese People's Armed Police Force;Department of General Surgery,Shanghai Municipal Corps Hospital,Chinese People's Armed Police Force;
  • 关键词:血管内皮生长因子 ; 碱性成纤维因子 ; 纳米微囊 ; 放射性损伤 ; 创面愈合
  • 英文关键词:vascular endothelial growth factor;;basic fibroblast growth factor;;PLGA nanoparticles;;radioactive injury;;wound healing
  • 中文刊名:WJYX
  • 英文刊名:Medical Journal of the Chinese People's Armed Police Force
  • 机构:武警上海总队医院整形科;武警上海总队医院烧伤科;武警上海总队医院普外科;
  • 出版日期:2018-10-15
  • 出版单位:武警医学
  • 年:2018
  • 期:v.29;No.296
  • 基金:上海市卫生局科研课题(20114341);; 武警上海总队医院科研立项课题(2011KY04)
  • 语种:中文;
  • 页:WJYX201810006
  • 页数:5
  • CN:10
  • ISSN:11-3002/R
  • 分类号:27-30+34
摘要
目的探讨负载VEGF、bFGF的聚乳酸-羟基乙酸共聚物(poly lactic-co-glycolic acid,PLGA)纳米微囊复合体对放射性损伤创面愈合的影响。方法以PLGA为支架联合应用bFGF、VEGF构建纳米微囊,作用于小鼠放射性损伤创面作为实验组,单纯应用PLGA为支架,未用bFGF、VEGF的作为对照组,观察两组创面愈合率、创面的病理改变;于伤后不同时间点检测创面新生血管细胞数目、毛细血管截断面积及成纤维细胞数量; RT-PCR检测创面VEGF mRNA、bFGF mRNA的表达水平;观察其对放射性创面愈合的影响。结果实验组创面愈合率明显高于对照组;实验组创面组织中VEGF mRNA、bFGF mRNA的表达均高于对照组,差异均有统计学意义(P <0. 05);对创面组织进行HE染色,发现实验组肉芽组织增多增厚,成纤维细胞数量及密度均高于对照组;伤后第8天、第15天,实验组的新生毛细血管数量及毛细血管横截面积均较对照组有所增加,实验组的成纤维细胞计数也明显高于对照组,差异均有统计学意义(P <0. 05)。结论采用负载VEGF、bFGF的PLGA纳米微囊复合体可以促进小鼠放射性损伤创面的愈合。
        Objective To study the effects of poly lactic-co-glycolic acid( PLGA) scaffold incorporating VEGF and bFGF loaded nanoparticle complexes on the healing of murine radioactive wounds. Methods Mice undergoing combined application of PLGA and VEGF/bFGF loaded nanoparticle complexes against radioactive wounds were assigned to the experimental group,while those among whom PLGA alone was used to treat radioactive wounds were considered the control group. The wound healing rate and pathological changes of the wounds were observed,while the number of new vascular cells,the area of capillary interception and the number of fibroblasts were detected at different time points after injury between the two groups. Results With regard to the wound surface of mice with radiation injury,the wound healing rate of the experimental group was significantly higher than that of the control group after the combined application of bFGF and VEGF. The expressions of VEGF mRNA and bFGF mRNA in wound tissue of the experimental group were higher than those of the control group,and there was significant difference between the two groups( P < 0. 05). HE staining performed on the wound tissue suggested that the granulation tissue in the experimental group increased and thickened,and the number and density of fibroblasts were better than those of the control group. Eight and fifteen days after injury,the number and the cross-sectional area of newborn blood capillaries were both increased in the experimental group compared with the control group,so was the number of fibroblasts. Conclusions PLGA nanoparticle complexes loaded with VEGF and bFGF can promote the healing of radioactive wounds in mice.
引文
[1]王慕,徐丽,周志钢,等.γ射线对小鼠皮肤缺损创面愈合的影响及其机制探讨[J].山东医药,2015,55(48):15-18.
    [2]Olascoaga A,Vilar C D,Poitevin C A,et al. Wound healing in radiated skin:pathophysiology and trend opinions[J]. Int Wound,2008,5:246-257
    [3]Jia J,Dellinger A E,Weiss E S,et al. Direct evidence of target inhibition with Anti-VEGF,EGFR,and m TOR therapies in a clinical model of wound healing[J]. Clin Cancer Res,2015,21(15):3442-3452.
    [4]Li W,Lan Y,Guo R,et al. In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor[J]. Biomater Appl,2015,29(6):882-893.
    [5]Shen T,Pan Z G,Zhou X,et al. Accelerated healing of diabetic wound using artificial dermis constructed with adipose stem cells and poly(L-glutamic acid)/chitosan scaffold[J]. Chin Med(Engl),2013,126(8):1498-1503.
    [6]蔡金玲,杜丽,崔玉芳.放创复合伤创面难愈机制及治疗的研究新进展[J].感染、炎症、修复,2013,14(1):54-57.
    [7]Johnson K E,Wilgus T A. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair[J]. Adv Wound Care,2014,3(10):647-661.
    [8]Gilliver S C,Emmerson E,Bernhagen J,et al. MIF:a key palyer in cutaneous biology and wound healing[J].Exp Dermatol,2011,20(1):1-6.
    [9]Schultz G S,Wysocki A. Interactions between extracellular matrix and growth factors in wound healing[J].Wound Repair Regen,2009,17(2):153-162.
    [10]Sivamani R K,Garcia M S,Isseroff R R. Wound re-epithelialization:modulating keratinocyte migration in wound healing[J]. Front Biosci,2007,12:2849-2868.
    [11]Eming S A,Smola H,Krieg T. Treatment of chronic wounds:state of the art and future concepts[J]. Cells Tissues Organs,2002,172(2):105-117.
    [12]Lauer G,Sollberg S,Cole M,et al. Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds[J]. Invest Dermatol,2000,115(1):12-18.
    [13]Galiano R D,Tepper O M,Pelo C R,et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells[J]. Am J Pathol,2004,164(6):1935-1947.
    [14]Soscia D A,Raof N A,Xie Yubing,et al. AntibioticLoaded PLGA nanofibers for wound healing applications[J]. Adv Engineering Materials,2010,12(4):83-88.
    [15]Kim I S,Lee S K,Park Y M,et al. Physicochemical characterization of poly(L-lactic acid)and poly(D,Llactide-co-glycolide)nanoparticles with polyethylenimine as gene delivery carrier[J]. Int J Pharm,2005,298(1):255-262.
    [16]Cui F Y,Song X R,Li Z Y,et al. The pigment epithelial-derived factor gene loaded in PLGA nanoparticles for therapy of colon carcinoma[J]. Oncol Rep,2010,24(3):661-618.
    [17]Barrientos S,Stojadinovic O,Golinko M S,et al. Growth factors and cytokines in wound healing[J]. Wound Repair Regen,2008,16(5):585-601.
    [18]Chen J,De S,Brainard J,et al. Metastatic properties of prostate cancer cells are controlled by VEGF[J]. Cell Commun Adhes,2004,11(1):1-11.
    [19]Takamiya M,Saigusa K,Nakayashiki N,et al. Studies on mRNA expression of basic fibroblast growth factor in wound healing for wound age determination[J]. Int J Legal Med,2003,117(1):46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700