Hydrodynamic Stress Tensor in Inhomogeneous Colloidal Suspensions: an Irving-Kirkwood Extension
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrodynamic Stress Tensor in Inhomogeneous Colloidal Suspensions: an Irving-Kirkwood Extension
  • 作者:孙宗利 ; 康艳霜 ; 康艳梅
  • 英文作者:Zong-Li Sun;Yan-Shuang Kang;Yan-Mei Kang;Science and Technology College, North China Electric Power University;College of Science, Hebei Agricultural University;College of Chemistry and Environmental Science, Hebei University;University of International Relations;
  • 英文关键词:hydrodynamic stress;;colloidal suspension;;diffusion;;hydrodynamic force
  • 中文刊名:CITP
  • 英文刊名:理论物理(英文版)
  • 机构:Science and Technology College, North China Electric Power University;College of Science, Hebei Agricultural University;College of Chemistry and Environmental Science, Hebei University;University of International Relations;
  • 出版日期:2019-07-01
  • 出版单位:Communications in Theoretical Physics
  • 年:2019
  • 期:v.71
  • 基金:Supported by the National Natural Science Foundation of China under Grant No.21503077;; the Fundamental Research Fund for the Central Universities of China under Grant No.2016MS156;; the Research Project from Hebei Education Department under Grant No.QN2018119
  • 语种:英文;
  • 页:CITP201907014
  • 页数:11
  • CN:07
  • ISSN:11-2592/O3
  • 分类号:108-118
摘要
Based on statistical mechanics for classical fluids, general expressions for hydrodynamic stress in inhomogeneous colloidal suspension are derived on a molecular level. The result is exactly an extension of the Iving-Kirkwood stress for atom fluids to colloidal suspensions where dynamic correlation emerges. It is found that besides the inter-particle distance, the obtained hydrodynamic stress depends closely on the velocity of the colloidal particles in the suspension,which is responsible for the appearance of the solvent-mediated hydrodynamic force. Compared to Brady's stresslets for the bulk stress, our results are applicable to inhomogeneous suspension, where the inhomogeneity and anisotropy of the dynamic correlation should be taken into account. In the near-field regime where the packing fraction of colloidal particles is high, our results can reduce to those of Brady. Therefore, our results are applicable to the suspensions with low, moderate, or even high packing fraction of colloidal particles.
        Based on statistical mechanics for classical fluids, general expressions for hydrodynamic stress in inhomogeneous colloidal suspension are derived on a molecular level. The result is exactly an extension of the Iving-Kirkwood stress for atom fluids to colloidal suspensions where dynamic correlation emerges. It is found that besides the inter-particle distance, the obtained hydrodynamic stress depends closely on the velocity of the colloidal particles in the suspension,which is responsible for the appearance of the solvent-mediated hydrodynamic force. Compared to Brady's stresslets for the bulk stress, our results are applicable to inhomogeneous suspension, where the inhomogeneity and anisotropy of the dynamic correlation should be taken into account. In the near-field regime where the packing fraction of colloidal particles is high, our results can reduce to those of Brady. Therefore, our results are applicable to the suspensions with low, moderate, or even high packing fraction of colloidal particles.
引文
[1]W.B.Russel,D.A.Saville,and W.R.Schowalter,Colloidal Dispersions,Cambridge University Press,Cambridge(1989).
    [2]J.H.Irving and J.G.Kirkwood,J.Chem.Phys.18(1950)817.
    [3]P.Schofield and J.R.Henderson,Proc.R.Soc.London379(1982)231.
    [4]Y.Long,J.C.Palmer,B.Coasne,et al.,Phys.Chem.Chem.Phys.13(2011)17163.
    [5]M.Sedghi and M.Piri,Fluid Phase Equil.459(2018)196.
    [6]Z.L.Sun,Y.S.Kang,and Y.M.Kang,Chin.Phys.B28(2019)036102.
    [7]K.Rah and B.C.Eu,Phys.Rev.Lett.83(1999)4566.
    [8]C.Braga,E.R.Smith,and A.Nold,et al,J.Chem.Phys.149(2018)044705.
    [9]J.K.G.Dhont,An Introduction to Dynamics of Colloids,Elsevier,Amsterdam(1996).
    [10]′E.Guazzelli and J.F.Morris,A Physical Introduction to Suspension Dynamics,Cambridge University Press,Cambridge(2011).
    [11]G.K.Batchelor,J.Fluid Mech.83(1977)97.
    [12]B.U.Felderhof,Physica 147A(1987)203.
    [13]J.F.Brady,J.Chem.Phys.98(1993)3335.
    [14]J.F.Brady,J.Chem.Phys.99(1993)567.
    [15]J.Mittal,J.R.Errington,and T.M.Truskett,Phys.Rev.Lett.96(2006)177804.
    [16]S.Heitkam,Y.Yoshitake,F.Toquet,et al.,Phys.Rev.Lett.110(2013)178302.
    [17]M.Bier and D.Arnold,Phys.Rev.E 88(2013)062307.
    [18]H.L¨owen and M.Heinen,Eur.Phys.J.Special Topics223(2014)3113.
    [19]J.M.Brader and M.Kr¨uger,Mol.Phys.109(2011)1029.
    [20]D.S.Dean,J.Phys.A:Math.Gen.29(1996)L613.
    [21]M.L.Ekiel-Je˙zewska and B.U.Felderhof,J.Chem.Phys.142(2015)014904.
    [22]J.K.G.Dhont,J.Chem.Phys.105(1996)5112.
    [23]G.K.L.Chan and R.Finken,Phys.Rev.Lett.94(2005)183001.
    [24]M.Rex and H.L¨owen,Phys.Rev.Lett.101(2008)148302.
    [25]B.D.Goddard,A.Nold,N.Savva,et al.,Phys.Rev.Lett.109(2012)120603.
    [26]U.M.B.Marconi and P.Tarazona,J.Chem.Phys.110(1999)8032.
    [27]A.J.Archer and R.Evans,J.Chem.Phys.121(2004)4246.
    [28]J.Rotne and S.Prager,J.Chem.Phys.50(1969)4831.
    [29]S.L.Zhao and J.Z.Wu,J.Chem.Phys.134(2011)054514.
    [30]D.J.Evans and G.Morriss,Statistical Mechanics of Nonequilibrium Liquids,Cambridge University Press,Cambridge(2008).
    [31]B.D.Goddard,A.Nold,and S.Kalliadasis,J.Chem.Phys.145(2016)214106.
    [32]J.P.Hansen and I.R.McDonald,Theory of Simple Liquids,Academic Press,London(2006).
    [33]D.Henderson,Fundamentals of Inhomogeneous Fluids,Dekker,New York(1992).
    [34]S.Kim and S.J.Karrila,Microhydrodynamics:Principles and Selected Applications,Butterworth-Heinemann,Boston(1991).
    [35]T.N.Phung,J.F.Brady,and G.Bossis,J.Fluid Mech.313(1996)181.
    [36]J.F.Brady and J.F.Morris,J.Fluid Mech.348(1997)103.
    [37]S.C.Takatori,W.Yan,and J.F.Brady,Phys.Rev.Lett.113(2014)028103.
    [38]Y.Yurkovetsky and J.F.Morris,J.Rheol.52(2008)141.
    [39]P.Strating,J.Chem.Phys.103(1995)10226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700