用户名: 密码: 验证码:
“纳米制造的基础研究”重大研究计划结题综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of the Achievements of Major Research Plan on “Fundamental Research on Nanomanufacturing”
  • 作者:王国彪 ; 赖一楠 ; 卢秉恒 ; 雒建斌 ; 黎明 ; 刘红忠 ; 刘磊 ; 叶鑫
  • 英文作者:Wang Guobiao;Lai Yinan;Lu Bingheng;Luo Jianbin;Li Ming;Liu Lei;Ye Xin;Department of Engineering and Materials Science,National Natural Science Foundation of China;School of Mechanical Engineering,Xi'an Jiaotong University;Department of Precision Instrument,Tsinghua University;School of Mechanical Engineering,Southeast University;School of Mechanical Engieering,Beijing Institute of Technology;
  • 关键词:纳米制造 ; 纳米精度 ; 纳米尺度 ; 跨尺度 ; 纳米制造装备 ; 基金委重大研究计划
  • 英文关键词:nanomanufacturing;;nano-precision manufacturing;;nanoscale manufacturing;;cross-scale manufacturing;;high-end manufacturing equipment;;major research plan of NSFC
  • 中文刊名:ZKJJ
  • 英文刊名:Bulletin of National Natural Science Foundation of China
  • 机构:国家自然科学基金委员会工程与材料科学部;西安交通大学机械工程学院;清华大学精密仪器与机械学系;东南大学机械工程学院;北京理工大学机械与车辆学院;
  • 出版日期:2019-05-15
  • 出版单位:中国科学基金
  • 年:2019
  • 期:v.33;No.152
  • 语种:中文;
  • 页:ZKJJ201903008
  • 页数:14
  • CN:03
  • ISSN:11-1730/N
  • 分类号:55-68
摘要
国家自然科学基金委员会重大研究计划"纳米制造的基础研究"历时8年于2018年完成结束评估。重大研究计划实施过程中,在基础理论方法、关键技术、核心仪器装备、典型工程示范应用等几个层面取得了系列集成成果。本文概述了该计划在亚纳米材料去除机理、纳米尺度结构成形、跨尺度批量化制造的原理与方法、系列纳米制造装备国产化等关键技术上所取得的一系列具有重大国际影响的突破性进展。文中展望了纳米制造研究的发展态势,提出了未来关注的重点学术方向。
        NSFC major research plan of "Fundamental Research on Nanomanufacturing"has been successfully executed for 8 years and completed in 2018.A series of integrated achievements have been attained during the implementation of this major research plan in terms of basic theoretical methods,key technologies,core equipment,typical engineering demonstration,etc.This review summarizes the research progress of this major research plan and presents a series of representative breakthroughs,which mainly focus on materials removal at sub-nano level,nanostructure forming,mutli-scale mass production and localization of high-end nanomanufacturing equipments.This review also prospects the developments trends of nanomanufacturing and put forward several key academic fields to be paid more attention in the future.
引文
[1]王国彪,邵金友,宋建丽,等.“纳米制造的基础研究”重大研究计划研究进展.机械工程学报,2016,52(5):68-79.
    [2]王国彪,黎明,丁玉成,等.重大研究计划“纳米制造的基础研究”综述.中国科学基金,2010,24(2):70-77.
    [3]Chen L,Wen J,Zhang P,et al.Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions.Nature Communications,2018,9(1):1542.
    [4]Chen X,Peng Z,Yu X,et al.Microstructure and tribological performance of self-lubricating diamond/tetrahedral amorphous carbon composite film.Applied Surface Science,2011,257(8):3180-3186.
    [5]Li H,Zhao Q,Lu X et al.Signal processing and analysis for copper layer thickness measurement within a large variation range in the CMP process.Review of Scientific Instruments,2017,88(11):115103.
    [6]Wen J,Ma T,Zhang W,et al.Atomic insight into tribochemical wear mechanism of silicon at the Si/SiO2interface in aqueous environment:molecular dynamics simulations using ReaxFF reactive force field.Applied Surface Science,2016,390:216-223.
    [7]Xie G,Shi Z,Yang R,et al.Graphene edge lithography.Nano Letters,2012,12(9):4642-4646.
    [8]Wu S,Liu B,Shen C,et al.Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges.Physical Review Letters,2018,120(21):216601.
    [9]Wang J,Fang F,Zhang X.An experimental study of cutting performance on monocrystalline germanium after ion implantation.Precision Engineering,2015,39:220-223.
    [10]Zhang N,Srivastava A,Kirwan B,et al.Manufacturing microstructured tool inserts for the production of polymeric microfluidic devices.Journal of Micromechanics and Microengineering,2015,25(9):095005.
    [11]Gao S,Dong Z,Kang R,et al.Design and evaluation of soft abrasive grinding wheels for silicon wafers.Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2013,227(4):578-586.
    [12]Zhang Z,Wang B,Kang R,et al.Changes in surface layer of silicon wafers from diamond scratching.CIRP Annals,2015,64(1):349-352.
    [13]Zhao D,Lu,X.Chemical mechanical polishing:theory and experiment.Friction,2013,1(4):306-326.
    [14]Gao S,Huang H,Zhu X,et al.Surface integrity and removal mechanism of silicon wafers in chemo-mechanical grinding using a newly developed soft abrasive grinding wheel.Materials Science in Semiconductor Processing,2017,63:97-106.
    [15]Shan K,Zhou P,Cai J,et al.Electrogenerated chemical polishing of copper.Precision Engineering,2015,39:161-166.
    [16]Li X,Ding Y,Shao J,et al.Fabrication of microlensarrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes.Advanced Materials,2012,24(23):165-169.
    [17]Lan H,Liu H.UV-nanoimprint lithography:structure,materials and fabrication of flexible molds.Journal of Nanoscience and Nanotechnology,2013,13(5):3145-3172.
    [18]Li X,Tian H,Shao J,et al.Decreasing the saturated contact angle in electrowetting-on-dielectrics by controlling thecChargetrapping at liquid-solid interfaces.Advanced Functional Materials,2016,26(18):2994-3002.
    [19]Tian H,Shao J,Ding Y,et al.Numerical characterization of electrohydrodynamic micro-or nanopatterning processes based on a phase-field formulation of liquid dielectrophoresis.Langmuir,2013,29(15):4703-4714.
    [20]Chen X,Tian H,Li X,et al.A high performance P(VDF-TrFE)nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling.Nanoscale,2015,7(27):11536-11544.
    [21]Tian ZW,Fen ZD,Tian ZQ,et al.Confined etchant layer eechnique for two-dimensional lithography at high resolution using electrochemical scanning tunneling microscopy.Faraday Discuss,1992,94:37-44.
    [22]Yuan Y,Han L,Zhang J,et al.Electrochemical mechanical micromachining based on confined etchant layer technique.Faraday Discussions,2013,164:189-197.
    [23]Zhan D,Han L,Zhang J,et al.Electrochemical micro/nano-machining:principles and practices.Chemical Society Reviews,2017,46(5):1526-1544.
    [24]Wang C,Zhang HW,Zhang JF,et al.New strategy for electrochemical micropatterning of nafionfilm in sulfuric acid solution.Electrochimica Acta,2014,146:125-133.
    [25]Chen C,Chen Y,Xu P et al.Silicon micro-cantilever chemical sensors fabricated in double-layer silicon-oninsulator(SOI)wafer.Microsystem Technologies,2016,22(8):1959-1965.
    [26]Wang Q,Wang E,Pan Z,et al.Self-rolled-up InGaAs/GaAs microtubes fabricated directly on Si(100)substrates.Journal of Vacuum Science&Technology B,Nanotechnology and Microelectronics:Materials,Processing,Measurement,and Phenomena,2014,32(3):030603.
    [27]Li Z.Emerging technologies of micro-nanoelectromechanical systems(MEMS/NEMS).Scientia Sinica Information,2012,42(12):1599-1615.
    [28]Liu Z,Du S,Cui A,et al.High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials.Advanced Materials,2017,29(17):1606298.
    [29]Liu Z,Cui A,Li J,et al.Folding 2D Structures into 3DConfigurations at the micro/nanoscale:principles,techniques,and applications.Advanced Materials,2018,1802211.
    [30]Li J,Liu Z.Focused-ion-beam-based nano-kirigami:from art to photonics.Nanophotonics,2018,7(10):1637-1650.
    [31]Cui A,Liu Z,Li J et al.Directly patterned substrate-free plasmonic“nanograter”structures with unusual Fano resonances.Light:Science&Applications,2015,e308.
    [32]Yang S,Liu Z,Jin L,et al.Surface plasmon polariton mediated multiple roroidalresonances in 3D folding metamaterials.ACS Photonics,2017,4(11):2650-2658.
    [33]Song Z,Lv C,Liang M,et al.Microscale silicon origami.Small,2016,12(39):5401-5406.
    [34]Wang C,Jiang L,Wang F,et al.First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions.Physics Letters A,2011,375(36):3200-3204.
    [35]Wang A,Jiang L,Li X,et al.Mask-free patterning of highconductivity metal nanowires in open air by spatially modulated femtosecond laser pulses.Advanced Materials,2015,27(40):6238-6243.
    [36]Jiang L,Wang A D,Li B,et al,Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication:modeling,method,measurement and application.Light:Science&Applications,2018,7(2):17134.
    [37]Yang B,Jiang L,Wang S,et al.Quantitative detection of oxygen in reduced graphene oxide by femtosecond laserinduced breakdown spectroscopy.Applied Optics,2018,57(5):1267-1272.
    [38]Yu Y,Jiang L,Cao Q,et al.Pump-probe imaging of the fsps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA.Optics Express,2015,23(25):32728-32735.
    [39]Leng N,Jiang L,Li X,et al.Femtosecond laser processing of fused silica and aluminum based on electron dynamics control by shaping pulse trains.Applied Physics A,2012,109(3):679-684.
    [40]Xiong W,Zhou YS,He XN,et al.Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation.Light:Science&Applications,2012,1(4):e6.
    [41]Qiao W,Huang W,Liu Y,et al.Toward scalable flexible nanomanufacturing for photonic structures and devices.Advanced Materials,2016,28(47):10353-10380.
    [42]Huang W,Shen S,Pu D,et al.Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures.Journal of Physics D:Applied Physics,2015,48(49):495105.
    [43]Huang W,Yu X,Liu Y,et al.A review of the scalable nano-manufacturing technology for flexible devices.Frontiers of Mechanical Engineering,2017,12(1):99-109.
    [44]Liu Z,Jiao N,Liu Z et al.Atomic force microscope deposition method for nano-lines.Chinese Science Bulletin,2014,48(2):200-206.
    [45]Hu KX,Wang QK,et al.Developmentand and application of vector-mode nanofabrication system by modulating electric signals based on AFM.Aviation Precision Manufacturing Technology,2013,1:001.
    [46]程柏,韩冰,谷立山,等。纳结构的连续激光复合微纳探针刻划加工.光学精密工程,2015,23(7):2043-2050.
    [47]Yan Y,Geng Y,Hu Z,et al.Fabrication of nanochannels with ladder nanostructure at the bottom using AFMnanoscratching method.Nanoscale Research letters,2014,9(1):212.
    [48]Yan Y,Geng Y,Hu Z.Recent advances in AFM tip-based nanomechanical machining.International Journal of Machine Tools and Manufacture,2015,99:1-18.
    [49]Li G,Xu Z,Fang F,et al.Micro cutting of V-shaped cylindrical grating template for roller nano-imprint.Journal of Materials Processing Technology,2013,213(6):895-904.
    [50]Ye X,Ding Y,Duan Y,et al.Effects of exposure time on defects and demolding force in soft ultraviolet nanoimprint lithography.Journal of Vacuum Science&Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena,2009,27(5):2091-2096.
    [51]Li G,Xu Z,Fang F,et al.Micro cutting of V-shaped cylindrical grating template for roller nano-imprint.Journal of Materials Processing Technology,2014,213(6):895-904.
    [52]Liu H,Jiang W,Ding Y,et al.Roller-reversal imprint process for preparation of large-area microstructures.Journal of Vacuum Science&Technology B,Nanotechnology and Microelectronics:Materials,Processing,Measurement,and Phenomena,2010,28(1):104-109.
    [53]Ban Y,Ye G,Liu H,et al.Pre-stress-assisted nanoimprint lithography for fabricating high-density diffraction gratings.Journal of Micromechanics and Microengineering,2018,28(10):105013.
    [54]Jiang W,Liu H,Yin L,et al.Fabrication of well-arrayed plasmonic mesoporous TiO 2/Ag films for dye-sensitized solar cells by multiple-step nanoimprint lithography.Journal of Materials Chemistry A,2013,1(21):6433-6440.
    [55]Ye G,Liu H,Jiang W,et al.Design and development of an optical encoder with sub-micron accuracy using a multipletracks analyser grating.Review of Scientific Instruments,2017,88(1):015003.
    [56]Ye G,Fan S,Liu H,et al.Design of a precise and robust linearized converter for optical encoders using a ratiometric technique.Measurement Science and Technology,2014,25(12):125003.
    [57]Fan S,Jiang W,Li X,et al.Fabrication of high-resolution reflective scale grating for an optical encoder using a patterned self-assembly process.Journal of Micromechanics and Microengineering,2016,26(7):075015.
    [58]Ye G,Liu H,Fan S,et al.A theoretical investigation of generalized grating imaging and its application to optical encoders.Optics Communications,2015,354:21-27.
    [59]Ye G,Liu H,Yan J,et al.Fabrication of high edgedefinition steel-tape gratings for optical encoders.Review of Scientific Instruments,2017,88(10):105006.
    [60]Cui Z.Printed Electronics:Materials,Technologies and Applications.John Wiley&Sons.2016.
    [61]Xu W,Zhao J,Qian L,et al.Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode(OLED).Nanoscale,2014,6(3):1589-1595.
    [62]Li Y,Mao L,Gao Y,et al.ITO-free photovoltaic cell utilizing a high-resolution silver grid current collecting layer.Solar Energy Materials and Solar Cells,2013,113:85-89.
    [63]Mao L,Chen Q,Li Y,et al.Flexible silver grid/PEDOT:PSS hybrid electrodes for large area inverted polymer solar cells.Nano Energy,2014,10:259-267.
    [64]Li Y,Wu Y,Ong BS.Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics.Journal of the American Chemical Society,2005.127(10):3266-3267.
    [65]Zhang H,Zhang F,Zhang X,et al.Portable,easy-tooperate,and antifouling microcapsule array chips fabricated by 3Dice printing for visual target detection.Analytical Chemistry,2015,87:6397-6402.
    [66]Li C,Yang S,Wang Y,et al.Measurement and characterization of a nano-scale multiple-step height sample using a stylus profiler.Applied Surface Science,2016,387:732-735.
    [67]Wang C,Yang S,Jing W,et al.Fabrication of nanoscale step height structure using atomic layer deposition combined with wet etching.Chinese Journal of Mechanical Engineering,2016,29(1):91-97.
    [68]Yang S,Li C,Wang C,et al.A sub-50nm three-step height sample for AFM calibration.Measurement Science and Technology,2014,25(12):125004.
    [69]Zheng F,Pu Z,He E,et al.From functional structure to packaging:fully-printing fabrication of microfluidic chip.Lab on a Chip,2018,18:1859-1866.
    [70]Zhan D,Han L,Yang D,et al.February.Confined etchant layer technique(CELT)for micromanufacture.In Nano/Micro Engineered and Molecular Systems(NEMS),2011,2011:863-867.
    [71]Cao Y,Guo S,Yan Y,et al.Etching and smooth processing of GaAs surface based on the confined etchant layer technique.International Journal of Nanomanufacturing,2017,13(1):71-80.
    [72]Zhang SJ,To S,Zhu ZW,et al.A review of fly cutting applied to surface generation in ultra-precision machining.International Journal of Machine Tools and Manufacture,2016,103:13-27.
    [73]Chen W,Liang Y,Luo X,et al.Multi-scale surface simulation of the KDP crystal fly cutting machining.The International Journal of Advanced Manufacturing Technology,2014,73(1-4):289-297.
    [74]Shao J,Ding Y,Wang W,et al.Generation of fullycovering hierarchical micro-/nano-structures by nanoimprinting and modified laser swelling.Small,2014,10(13):2595-2601.
    [75]Li X,Shao J,Tian H,et al.Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary forcedriven UV-imprinting.Journal of Micromechanics and Microengineering,2011,21(6):065010.
    [76]Le Y,Liu HZ,Ding YC,et al.Five-step loading locus for high-conformity patterning in nanoimprint lithography.Journal of Xi'an Jiaotong University,2005,9:005.
    [77]Wang C,Shao J,Tian H,et al.Step-controllable electricfield-assisted nanoimprint lithography for uneven large-area substrates.ACS Nano,2016,10(4):4354-4363.
    [78]Wang S,Chen YR,Wang S,et al.Design of 3Dprecision displacement system.Optics and Precision Engineering,2010,18(1):175-182.
    [79]Deng XW,Chen YR,Dan BB,et al.The design of nanoscale 3D precision displacement system.In Applied Mechanics and Materials,2014,456:199-202.
    [80]Chen J,Jin T,Wang J,et al.Study on machining mechanism of nanotwinned CBN cutting tool.In 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies:Advanced Optical Manufacturing Technologies,2014,9281:92811D.
    [81]靳田野,陈俊云,赵明慧,等。纳米孪晶立方氮化硼机械研磨机理研究.机械工程学报,2016,52(5):95-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700