Ga_2O_3改性Cu/SiO_2催化剂降低水蒸气催化重整产物中CO选择性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ga_2O_3-Modified Cu/SiO_2 Catalysts with Low CO Selectivity for Catalytic Steam Reforming
  • 作者:黄静静 ; 蔡金孟 ; 马奎 ; 丁彤 ; 田野 ; 张静 ; 李新刚
  • 英文作者:HUANG Jingjing;CAI Jinmeng;MA Kui;DING Tong;TIAN Ye;ZHANG Jing;LI Xingang;Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University;Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences;
  • 关键词:水蒸气重整 ; 二甲醚 ; Cu/SiO_2 ; Ga_2O_3 ; 选择性
  • 英文关键词:Steam reforming;;Dimethyl ether;;Cu/SiO_2;;Ga_2O_3;;Selectivity
  • 中文刊名:WLHX
  • 英文刊名:Acta Physico-Chimica Sinica
  • 机构:天津大学化工学院天津化学化工协同创新中心天津市应用催化科学与工程重点实验室;中国科学院北京高能物理研究所北京同步辐射装置;
  • 出版日期:2019-04-15
  • 出版单位:物理化学学报
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金(21476159,21476160);; 天津市自然科学基金(15JCZDJC37400,15JCYBJC23000)资助项目~~
  • 语种:中文;
  • 页:WLHX201904016
  • 页数:11
  • CN:04
  • ISSN:11-1892/O6
  • 分类号:92-102
摘要
采用蒸氨法制备的xGa-Cu/SiO_2催化剂可以同时产生Cu~0和Cu~+物种,加入Ga后催化剂的二甲醚水蒸气重整反应活性和选择性都有很大程度的提高,其中5Ga-Cu/SiO_2催化剂在380°C时的二甲醚转化率为99.8%,CO选择性为4.8%。通过透射电子显微镜(TEM),氢气-程序升温还原(H_2-TPR),N_2O滴定和X射线光电子能谱(XPS)结果发现,Ga与Cu物种之间的相互作用,一方面可以提高Cu物种的分散度,另一方面可以促进Cu~+的形成。通过改变Ga负载量可以调变Cu~+/(Cu~0+Cu~+)的比例,氢气的时空收率结果表明,Ga通过调变Cu~+/(Cu~0+Cu~+)影响催化活性,并且当Cu~+/(Cu~0+Cu~+)=0.5时,氢气时空收率达到最大值为5.02mol·g~(-1)·h~(-1)。程序升温表面反应(TPSR)结果表明,Ga通过促进水气变换反应提高反应产物CO_2选择性。
        Dimethyl ether(DME) is considered a promising energy source and clean fuel for the next generation, with its high hydrogen content, and non-toxicity compared with methanol. In addition, it is easy to store and transport. DME steam reforming(SR) has received considerable attention for its applicability in the production of hydrogen for fuel cell applications. Generally, DME SR consists of two steps: DME hydrolysis and methanol SR. DME hydrolysis often occurs on an acidic catalyst, such as γ-Al_2O_3. Methanol SR in Cu-based catalysts requires both Cu~0 and Cu~+ as the active sites; moreover, the relative ratios of Cu~0 and Cu~+ can influence the catalytic performance. In addition, the byproduct of CO also commonly exists in DME SR, and a small amount of CO can poison Pt electrodes of fuel cells. Therefore, it is necessary to reduce the concentration of the generated CO in DME SR. Herein, using an ammonia-evaporation method, we synthesized a Cu/SiO_2 catalyst, which can simultaneously generate the dual copper species of Cu~0 and Cu~+ by reduction. After modification with Ga_2O_3, the xG a-Cu/SiO_2 catalysts show much improved catalytic activity and decreased CO selectivity. The Cu/SiO_2 catalyst shows a DME conversion of 90.7% and CO selectivity of 11.5% at 380 °C. The 5 Ga-Cu/SiO_2 catalyst, with a loading amount of Ga_2O_3 of 5%(w, based on the weight of Cu), shows the best performance, with a DME conversion of 99.8% and CO selectivity of 4.8% under the same conditions. The measurement of apparent activation energies shows that the addition of Ga_2O_3 cannot change the reaction path. By multiple characterization methods, we demonstrated that the improved performance can be ascribed to the following two aspects. First, our characterization results show that the loaded Ga_2O_3 is highly dispersed on the Cu/SiO_2 catalyst, which can increase the interaction between Ga and Cu species. This can not only improve the dispersion of copper species(Cu~0 and Cu~+) on the catalysts, but can also adjust the ratios of Cu~+/(Cu~0 + Cu~+). The H_2 production rate shows a typical volcano curve owing to the ratio of Cu~+/(Cu~0 + Cu~+), and reaches a maximum of 5.02 mol·g~(-1)·h~(-1) at Cu~+/(Cu~0 + Cu~+) = 0.5 for the 5 Ga-Cu/SiO_2 catalyst. We conclude that the interaction between Ga and Cu species and the synergistic effect between Cu~0 and Cu~+ result in the promoted catalytic activity for DME SR. Second, by using a temperature-programmed surface reaction(TPSR), we showed that the addition of Ga_2O_3 can efficiently promote the water–gas shift reaction, thereby reducing the CO selectivity in DME SR. Thus, Ga_2O_3 suppresses the generation of CO, leading to the low CO selectivity and high CO_2 selectivity. In summary, the Ga_2O_3-modified Cu/SiO_2 catalyst yields reformates with low CO selectivity and high catalytic activity for DME SR. Our work provides a novel approach to designing a highly efficient Cu-based catalyst for catalytic SR systems.
引文
(1)Yao,S.;Zhang,X.;Zhou,W.;Gao,R.;Xu,W.;Ye,Y.;Lin,L.;Wen,X.;Liu,P.;Chen,B.;et al.Science 2017,357,389.doi:10.1126/science.aah4321
    (2)Yue,H.;Ma,X.;Gong,J.Acc.Chem.Res.2014,47,1483.doi:10.1021/ar4002697
    (3)He,T.;Pachfule,P.;Wu,H.;Xu,Q.;Chen,P.Nat.Rev.Mater.2016,1,16059.doi:10.1038/natrevmats.2016.59
    (4)Mathew,T.;Yamada,Y.;Ueda,A.;Shioyama,H.;Kobayashi,T.Appl.Catal.A-Gen.2005,286,11.doi:10.1016/j.apcata.2005.02.030
    (5)Turco,M.;Bagnasco,G.;Costantino,U.;Marmottini,F.;Montanari,T.;Ramis,G.;Busca,G.J.Catal.2004,228,43.doi:10.1016/j.jcat.2004.08.026
    (6)Wang,X.L.;Pan,X.M.;Lin,R.;Kou,S.Y.;Zou,W.B.;Ma,J.X.Acta Phys.-Chim.Sin.2010,26,1296.[王晓蕾,潘相敏,林瑞,寇素原,邹卫兵,马建新.物理化学学报,2010,26,1296.]doi:10.3866/PKU.WHXB20100322
    (7)Park,S.;Kim,H.;Choi,B.J.Ind.Eng.Chem.2010,16,734.doi:10.1016/j.jiec.2010.07.010
    (8)Mihai,O.;Fathali,A.;Auvray,X.;Olsson,L.Appl.Catal.B-Environ.2014,160,480.doi:10.1016/j.apcatb.2014.05.048
    (9)Yoshida,H.;Iwasa,N.;Akamatsu,H.;Arai,M.Int.J.Hydrog.Energy 2015,40,5624.doi:10.1016/j.ijhydene.2015.02.111
    (10)Erena,J.;Vicente,J.;Aguayo,A.T.;Gayubo,A.G.;Olazar,M.;Bilbao,J.Int.J.Hydrog.Energy 2013,38,10019.doi:10.1016/j.ijhydene.2013.05.134
    (11)Takeishi,K.Appl.Catal.A-Gen.2004,260,111.doi:10.1016/j.apcata.2003.10.006
    (12)Vicente,J.;Gayubo,A.G.;Erena,J.;Aguayo,A.T.;Olazar,M.;Bilbao,J.Appl.Catal.B-Environ.2013,130,73.doi:10.1016/j.apcatb.2012.10.019
    (13)Fukunaga,T.;Ryumon,N.;Shimazu,S.Appl.Catal.A-Gen.2008,348,193.doi:10.1016/j.apcata.2008.06.031
    (14)Faungnawakij,K.;Kikuchi,R.;Eguchi,K.J.Power Sources 2007,164,73.doi:10.1016/j.jpowsour.2006.09.072
    (15)Wang,X.L.;Ma,K.;Guo,L.H.;Ding,T.;Cheng,Q.P.;Tian,Y.;Li,X.G.Acta Phys.-Chim.Sin.2017,33,1699.[王新雷,马奎,郭丽红,丁彤,程庆鹏,田野,李新刚.物理化学学报,2017,33,1699.]doi:10.3866/PKU.WHXB201704263
    (16)Lv,J.;Zhou,S.;Ma,K.;Meng,M.;Tian,Y.Chin.J.Catal.2015,36,1295.doi:10.1016/S1872-2067(15)60883-X
    (17)Wang,X.L.;Pan,X.M.;Lin,R.;Ren,K.W.;Kou,S.Y.;Ma,J.X.Acta Phys.-Chim.Sin.2009,25,1097.[王晓蕾,潘相敏,林瑞,任克威,寇素原,马建新.物理化学学报,2009,25,1097.]doi:10.3866/PKU.WHXB20080608
    (18)Badmaev,S.D.;Volkova,G.G.;Belyaev,V.D.;Sobyanin,V.A.React.Kinet.Catal.Lett.2007,90,205.doi:10.1007/s11144-007-5082-8
    (19)Yan,C.;Hai,H.;Guo,C.;Li,W.;Huang,S.;Chen,H.Int.J.Hydrog.Energy 2014,39,10409.doi:10.1016/j.ijhydene.2014.04.096
    (20)Zang,Y.;Dong,X.;Wang,C.Chem.Eng.J.2017,313,1583.doi:10.1016/j.cej.2016.11.034
    (21)Faungnawakij,K.;Shimoda,N.;Fukunaga,T.;Kikuchi,R.;Eguchi,K.Appl.Catal.A-Gen.2008,341,139.doi:10.1016/j.apcata.2008.02.039
    (22)Kim,W.;Mohaideen,K.K.;Seo,D.J.;Yoon,W.L.Int.J.Hydrog.Energy 2017,42,2081.doi:10.1016/j.ijhydene.2016.11.014
    (23)Ritzkopf,I.;Vukojevi?,S.;Weidenthaler,C.;Grunwaldt,J.D.;Schüth,F.Appl.Catal.A-Gen.2006,302,215.doi:10.1016/j.apcata.2006.01.014
    (24)Xi,H.;Hou,X.;Liu,Y.;Qing,S.;Gao,Z.Angew.Chem.Int.Ed.2014,53,11886.doi:10.1002/anie.201405213
    (25)Wang,X.;Ma,K.;Guo,L.;Tian,Y.;Cheng,Q.;Bai,X.;Huang,J.;Ding,T.;Li,X.Appl.Catal.A-Gen.2017,540,37.doi:10.1016/j.apcata.2017.04.013
    (26)Wu,G.S.;Mao,D.S.;Lu,G.Z.;Cao,Y.;Fan,K.N.Catal.Lett.2009,130,177.doi:10.1007/s10562-009-9847-8
    (27)Cui,Y.;Dai,W.L.Catal.Sci.Technol.2016,6,7752.doi:10.1039/c6cy01575a
    (28)Gong,J.;Yue,H.;Zhao,Y.;Zhao,S.;Zhao,L.;Lv,J.;Wang,S.;Ma,X.J.Am.Chem.Soc.2012,134,13922.doi:10.1021/ja3034153
    (29)Zhu,S.;Gao,X.;Zhu,Y.;Zhu,Y.;Zheng,H.;Li,Y.J.Catal.2013,303,70.doi:10.1016/j.jcat.2013.03.018
    (30)Zhao,S.;Yue,H.;Zhao,Y.;Wang,B.;Geng,Y.;Lv,J.;Wang,S.;Gong,J.;Ma,X.J.Catal.2013,297,142.doi:10.1016/j.jcat.2012.10.004
    (31)Chen,L.;Guo,P.;Qiao,M.;Yan,S.;Li,H.;Shen,W.;Xu,H.;Fan,K.J.Catal.2008,257,172.doi:10.1016/j.jcat.2008.04.021
    (32)Yin,A.;Wen,C.;Guo,X.;Dai,W.L.;Fan,K.J.Catal.2011,280,77.doi:10.1016/j.jcat.2011.03.006
    (33)Haghofer,A.;F?ttinger,K.;Girgsdies,F.;Teschner,D.;Knop-Gericke,A.;Schl?gl,R.;Rupprechter,G.J.Catal.2012,286,13.doi:10.1016/j.jcat.2011.10.007
    (34)Arteta,L.;Remiro,A.;Epron,F.;Bion,N.;Aguayo,A.T.;Bilbao,J.;Gayubo,A.G.Ind.Eng.Chem.Res.2016,55,3546.doi:10.1021/acs.iecr.6b00126
    (35)Tong,W.;West,A.;Cheung,K.;Yu,K.M.;Tsang,S.C.E.ACSCatal.2013,3,1231.doi:10.1021/cs400011m
    (36)Haghofer,A.;Ferri,D.;F?ttinger,K.;Rupprechter,G.ACS Catal.2012,2,2305.doi:10.1021/cs300480c
    (37)Medina,J.C.;Figueroa,M.;Manrique,R.;Rodríguez Pereira,J.;Srinivasan,P.D.;Bravo-Suárez,J.J.;Baldovino Medrano,V.G.;Jiménez,R.;Karelovic,A.Catal.Sci.Technol.2017,7,3375.doi:10.1039/c7cy01021d
    (38)Zhou,S.;Ma,K.;Tian,Y.;Meng,M.;Ding,T.;Zha,Y.;Zhang,T.;Li,X.RSC Adv.2016,6,52411.doi:10.1039/c6ra07940g
    (39)He,Z.;Lin,H.;He,P.;Yuan,Y.J.Catal.2011,277,54.doi:10.1016/j.jcat.2010.10.010
    (40)Wang,Z.Q.;Xu,Z.N.;Peng,S.Y.;Zhang,M.J.;Lu,G.;Chen,Q.S.;Chen,Y.;Guo,G.C.ACS Catal.2015,5,4255.doi:10.1021/acscatal.5b00682
    (41)Cheah,S.F.;Brown,G.E.;Parks,G.A.Am.Miner.2000,85,118.doi:10.2138/am-2000-0113
    (42)Hariu,T.;Arima,H.;Sugiyama,K.J.Miner.Petrol.Sci.2013,108,111.doi:10.2465/jmps.121022c
    (43)Mc Keown,D.A.J.Non-Cryst.Solids 1994,180,1.doi:10.1016/0022-3093(94)90393-X
    (44)Zhang,B.;Hui,S.;Zhang,S.;Ji,Y.;Li,W.;Fang,D.J.Nat.Gas Chem.2012,21,563.doi:10.1016/S1003-9953(11)60405-2
    (45)Liu,Z.X.;Li,W.B.Acta Phys.-Chim.Sin.2016,32,1795.[刘兆信,黎维彬.物理化学学报,2016,32,1795.]doi:10.3866/PKU.WHXB201606021
    (46)Zhu,S.;Gao,X.;Zhu,Y.;Fan,W.;Wang,J.;Li,Y.Catal.Sci.Technol.2015,5,1169.doi:10.1039/C4CY01148A
    (47)Zhu,Y.;Kong,X.;Li,X.;Ding,G.;Zhu,Y.;Li,Y.W.ACS Catal.2014,4,3612.doi:10.1021/cs5009283
    (48)Mathew,T.;Yamada,Y.;Ueda,A.;Shioyama,H.;Kobayashi,T.;Gopinath,C.S.Appl.Catal.A-Gen.2006,300,58.doi:10.1016/j.apcata.2005.10.047
    (49)Mastalir,A.;Frank,B.;Szizybalski,A.;Soerijanto,H.;Deshpande,A.;Niederberger,M.;Schom?cker,R.;Schl?gl,R.;Ressler,T.J.Catal.2005,230,464.doi:10.1016/j.jcat.2004.12.020
    (50)Zhang,L.;Meng,M.;Zhou,S.;Sun,Z.;Zhang,J.;Xie,Y.;Hu,T.J.Power Sources 2013,232,286.doi:10.1016/j.jpowsour.2013.01.071
    (51)Zhou,X.;Meng,M.;Sun,Z.;Li,Q.;Jiang,Z.Chem.Eng.J.2011,174,400.doi:10.1016/j.cej.2011.09.018
    (52)Fukunaga,T.;Ryumon,N.;Shimazu,S.Appl.Catal.A-Gen.2008,348,193.doi:10.1016/j.apcata.2008.06.031
    (53)Tanaka,Y.;Kikuchi,R.;Takeguchi,T.;Eguchi,K.Appl.Catal.B-Environ.2005,57,211.doi:10.1016/j.apcatb.2004.11.007
    (54)Erena,J.;Vicente,J.;Aguayo,A.T.;Olazar,M.;Bilbao,J.;Gayubo,A.G.Appl.Catal.A-Gen.2013,142,315.doi:10.1016/j.apcatb.2013.05.034
    (55)Velu,S.;Suzuki,K.;Okazaki,M.;Kapoor,M.P.;Osaki,T.;Ohashi,F.J.Catal.2000,194,373.doi:10.1006/jcat.2000.2940
    (56)Kim,A.R.;Lee,B.;Park,M.J.;Moon,D.J.;Bae,J.W.Catal.Commun.2012,19,66.doi:10.1016/j.catcom.2011.12.023
    (57)Jochum,W.;Penner,S.;Kramer,R.;Fottinger,K.;Rupprechter,G.;Klotzer,B.J.Catal.2008,256,278.doi:10.1016/j.jcat.2008.03.018

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700