青藏高原大气氧含量影响因素及其贡献率分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Factors contribution to oxygen concentration in Qinghai-Tibetan Plateau
  • 作者:史培军 ; 陈彦强 ; 张安宇 ; 何研 ; 高妙妮 ; 杨静 ; 毛睿 ; 吴吉东 ; 叶涛 ; 效存德 ; 徐柏青
  • 英文作者:Peijun Shi;Yanqiang Chen;Anyu Zhang;Yan He;Miaoni Gao;Jing Yang;Rui Mao;Jidong Wu;Tao Ye;Cunde Xiao;Baiqing Xu;State Key Laboratory of Earth Surface Processes and Resource Ecology,Beijing Normal University;Academy of Disaster Reduction and Emergency Management,Ministry of Emergency Management & Ministry of Education,Beijing Normal University;Faculty of Geographical Science,Beijing Normal University;School of Systems Science,Beijing Normal University;Key Laboratory of Tibetan Environment Changes and Land Surface Processes,Institute of Tibetan Plateau Research,Chinese Academy of Sciences;
  • 关键词:氧含量 ; 青藏高原 ; 生命健康 ; 海拔 ; 植被 ; 气象要素 ; 主成分分析
  • 英文关键词:oxygen concentration;;Qinghai-Tibetan Plateau;;life and health;;altitude;;vegetation;;meteorological factors;;principal component analysis(PCA)
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:北京师范大学地表过程与资源生态国家重点实验室;北京师范大学应急管理部-教育部减灾与应急管理研究院;北京师范大学地理科学学部;北京师范大学系统科学学院;中国科学院青藏高原研究所中国科学院青藏高原环境变化与地表过程重点实验室;
  • 出版日期:2018-11-23 11:18
  • 出版单位:科学通报
  • 年:2019
  • 期:v.64
  • 基金:国家重点研发计划(2016YFA0602404);; 中国科学院战略性先导科技专项(XDA20000000);; 国家自然科学基金创新研究群体项目(41621061)资助
  • 语种:中文;
  • 页:KXTB201907008
  • 页数:10
  • CN:07
  • ISSN:11-1784/N
  • 分类号:89-98
摘要
已有工作认为,近地表空气中氧气相对含量在不同海拔上无明显变化.然而,对采集自青藏高原的数据利用主成分分析发现, 500 hPa的大气温度(500 hPa-T)、地表植被盖度及海拔对氧气相对和绝对含量都产生一定的影响.就氧气相对含量而言,植被盖度的方差解释率为33.1%, 500 hPa-T和海拔的方差解释率分别为28.5%和3.9%,总方差解释率为65.5%;通过理想气体状态方程计算得到氧气绝对含量,发现海拔对其方差解释率为45.9%,植被盖度和500h Pa-T分别为18.5%和14.5%,总方差解释率为78.9%.认识高海拔地区氧气相对和绝对含量与其对应的植被及气象要素间的关系,不仅对改善居住及生活在高海拔地区人类和家畜的健康具有重要指导作用,也对加深理解全球变化背景下高海拔地区的环境风险有重要的理论与实践意义.
        Oxygen(O_2) is essential for physiological activity in humans. On the Qinghai-Tibetan Plateau, with an average altitude of more than 4 km, hypoxia can seriously damage local residents' health, especially the respiratory system. When an organism cannot fully compensate for insufficient physiological function caused by hypoxia, acute and chronic mountain sickness(AMS and CMS) will occur. Previous studies have suggested that the relative oxygen concentration(ROC) in the near-ground air shows no obvious changes at different altitudes. However, during field work in the Qinghai-Tibetan Plateau, we found that, in addition to altitude, surface vegetation coverage and weather conditions may also have an impact on ROC. The results of data analysis showed that altitude and 500 hPa air temperature(500 hPa-T) were negatively correlated with ROC, while vegetation coverage was directly proportional to ROC. Based on principal component analysis(PCA), the results indicated that altitude, vegetation coverage and 500 hPa-T accounted for 65.5% of the total variance in ROC, of which the variance interpretation rate of vegetation coverage was highest(33.1%), followed by 500 hPa-T(28.5%) and altitude(3.9%). Absolute oxygen concentration(AOC) was calculated using the Ideal-Gas Equation. Using this equation, we found that altitude, vegetation coverage and 500 hPa-T accounted for 78.9% of the total variance in AOC, of which the variance interpretation rate of altitude was highest(45.9%), followed by vegetation coverage(18.5%) and 500 hPa-T(14.5%). AOC was negatively correlated with the incidence of CMS, and elevated AOC significantly reduced the incidence of CMS. The science community should pay more attention to this topic as a further decrease in ROC could significantly increase instability and risk in populations at high altitudes. These findings could enhance our understanding of the relationships between oxygen concentration, altitude, vegetation, weather conditions and their interactions. In addition, this research may not only play an important guiding role in human and animal health in high altitude areas, but also significantly deepen our understanding of the risks in high altitude environments under global warming both theoretically and practically. Multi-source data, including in-situ measurement data, remote sensing data, and model reanalysis data, will facilitate further implementations in this direction. Future work can be carried out using more fixed-point observations and by expanding the spatio-temporal extent of relevant data in high altitudes.
引文
1 US Geological Survey.Global multi-resolution terrain elevation data 2010(GMTED2010).US Geological Survey,2011
    2 National Aeronautics and Space Administration.Gridded Population of the World,Version 4(GPWv4):Population Density Adjusted to Match 2015 Revision UN WPP Country Totals.Palisades,NY:NASA Socioeconomic Data and Applications Center(SEDAC),2016
    3 Qiu J.The third pole.Nature,2008,454:393-396
    4 Katherine M.Climate change and security at the third pole.Contemp Int Rel,2011,53:34-55
    5 Lee J R,Raymond B,Bracegirdle T,et al.Climate change drives expansion of Antarctic ice-free habitat.Nature,2017,547:7661
    6 Yao T D,Thompson L,Mosbrugger V,et al.Third pole environment(TPE).Environ Dev,2012,3:52-64
    7 Chen D L,Xu B Q,Yao T D,et al.Assessment of past,present and future environmental changes on the Tibetan Plateau(in Chinese).Chin Sci Bull,2015,60:3025-3035[陈德亮,徐柏青,姚檀栋,等.青藏高原环境变化科学评估:过去、现在与未来.科学通报,2015,60:3025-3035]
    8 LeónVelarde F,Gamboa J,Chuquiza W,et al.Hematological parameters in high altitude residents living at 4355,4660,and 5500 meters above sea level.High Alt Med Biol,2000,1:97-104
    9 Guger C,Domej G,Lindner K,et al.Effects of a fast cable car ascent to an altitude of 2700 m on EEG and ECG.Neurosci Lett,2005,377:53-58
    10 Shi P J,Karsperson R.World Atlas of Natural Disaster Risk.Beijing:Springer&Beijing Normal University Press,2014.7
    11 Lassen N,Harper A.High-altitude cerebral oedema.Lancet,1975,2:1154
    12 Maggiorini M,Pierre S,Pfeiffer F,et al.High-altitude pulmonary edema is initially caused by an increase in capillary pressure.Circulation,2001,103:2078-2083
    13 Wu T Y,Ding S Q,Liu J L,et al.Ataxia:An early indicator in high altitude cerebral edema.High Alt Med Biol,2006,7:275-280
    14 Hackett P,Rennie D,Levine H.The incidence,importance,and prophylaxis of acute mountain sickness.Lancet,1976,2:1149-1155
    15 Wu T Y.Chronic mountain sickness on the Qinghai-Tibetan Plateau.Chin Med J,2005,118:161-168
    16 Schoene R.Illnesses at high altitude.Chest,2008,134:402-416
    17 Gonggalanzi,Labasangzhu,Nafstad P,et al.Acute mountain sickness among tourists visiting the high-altitude city of Lhasa at 3658 m above sea level:A cross-sectional study.Arch Public Health,2016,74:23
    18 Wang Y Z,Jiang H,Zhang H Z,et al.The influence of environment on human ability to work(in Chinese).In:Conference on Qinghai Province’s Resources,Environment and Development.Beijing:China Meteorological Press,1996,10:208-212[王永珍,姜红,张慧忠,等.环境对人类劳动能力的影响.见:青海省资源、环境和发展会议论文集.北京:气象出版社,1996,10:208-212]
    19 Hurtado A.Chronic mountain sickness.J Am Med Assoc,1942,120:1278-1282
    20 Monge C,Lozano R,Whittembury J.Effect of blood-letting on chronic mountain sickness.Nature,1965,207:770
    21 Xu C L,Xu W,Xu K F,et al.An association analysis between psychophysical characteristics and genome-wide gene expression changes in human adaptation to the extreme climate at the Antarctic Dome Argus.Mol Psychiatry,2015,20:536-544
    22 Porcelli S,Marzorati M,Healey B,et al.Lack of acclimatization to chronic hypoxia in humans in the Antarctica.Sci Rep,2017,7:1-6
    23 Zhang Y L,Li B Y,Zheng D.A discussion on the boundary and area of the Tibetan Plateau in China(in Chinese).Geogr Res,2002,21:1-9[张镱锂,李炳元,郑度.论青藏高原范围与面积.地理研究,2002,21:1-9]
    24 Wu T Y,Kayser B.High altitude adaptation in Tibetans.High Alt Med Biol,2006,7:193-208
    25 Li,X X,Pei T,Xu H T,et al.Ecological study of community-level factors associated with chronic mountain sickness in the young male Chinese immigrant population in Tibet.J Epidemiol,2012,22:136-143
    26 Statistics Bureau of Tibet Autonomous Region.Statistical Yearbook of Tibet(in Chinese).Beijing:China Statistics Press,2016[西藏自治区统计局.西藏统计年鉴.北京:中国统计出版社,2016]
    27 West J B.Prediction of barometric pressures at high altitudes with the use of model atmospheres.J Appl Physiol,1996,81:1850-1854
    28 Erik R S,Peter B.High Altitude-Human Adaptation to Hypoxia.Berlin:Springer,2014
    29 Zha R B,Sun G N,Dong Z B,et al.Assessment of atmospheric oxygen practical pressure and plateau reaction of tourists in the Qinghai-Tibet Plateau(in Chinese).Ecol Envion Sci,2016,25:92-98[查瑞波,孙根年,董治宝,等.青藏高原大气氧分压及游客高原反应风险评价.生态环境学报,2016,25:92-98]
    30 Cynthia M B.Two routes to functional adaptation:Tibetan and Andean high-altitude natives.Proc Natl Acad Sci USA,2007,104(Suppl.1):8655-8600
    31 Li Q Y,Xie Z C.Analyses on the characteristics of the vertical lapse rates of temperature-Taking Tibetan Plateau and its adjacent area as an example(in Chinese).J Shihezi Univ(Nat Sci),2006,24:719-723[李巧媛,谢自楚.高原区气温垂直递减率的分布及其特点分析--以青藏高原及其周边地区为例.石河子大学学报(自然科学版),2006,24:719-723]
    32 Liu J Y,Kuang W H,Zhang Z X,et al.Spatiaotemporal characteristics,patterns and causes of land-use changes in China since the late1980s.J Geogr Sci,2014,24:195-210
    33 He Y X,Pang Y X,Zhang Q,et al.Comprehensive evaluation of regional clean energy development levels based on principal component analysis and rough set theory.Renew Energy,2018,122:643-653
    34 Dong J W,Chen Y M,Meng P.The determining weight method of the influence factors of PM2.5 based on principal component analysis(in Chinese).J Guangdong Polytechn Normal Univ,2016,37:25-28[董健卫,陈艳美,孟盼.基于主成分分析的PM2.5的影响因素权重确定方法.广东技术师范学院学报,2016,37:25-28]
    35 Mason R,Anderson C.The development and decay of the 100 mb summertime anticyclone over southern Asia.Mon Wea Rev,1963,91:3-12
    36 Wang T M,Wu G X,Wan R J.Influence of the mechanical and thermal forcing of Tibetan Plateau on the circulation of the Asian summer monsoon area(in Chinese).Plat Meteorol,2008,27:1-9[王同美,吴国雄,万日金.青藏高原的热力和动力作用对亚洲季风区环流的影响.高原气象,2008,27:1-9]
    37 Wang Q,Fan X,Wang M.Recent warming amplification over high elevation regions across the globe.Clim Dyn,2014,43:87-101
    38 Lin X H,Han P F,Zhang W,et al.Sensitivity of alpine grassland carbon balance to interannual variability in climate and atmospheric CO2 on the Tibetan Plateau during the last century.Glob Planet Change,2017,154:23-32
    39 Jaswant S,Rudra P S,Rajni K.Influence of climate change on Antarctic flora.Polar Sci,2018,18:94-101
    40 Campbell E J.Respiratory failure.Br Med J,1965,1:1451-1460
    41 Michael R,Michael J R,Grace M.Advanced Biology.London:Nelson Thornes,2000.172-176
    42 Huang J P,Huang J P,Liu X Y,et al.The global oxygen budget and its future projection.Sci Bull,2018,63:1180-1186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700