潜载随动系统的扰动特征与复合轴补偿机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on the Perturbation Characteristics and Compound Axis Control for Submarine-borne Servo System
  • 作者:刘宗凯 ; 陆金磊 ; 薄煜明 ; 王军 ; 汤兆烈
  • 英文作者:LIU Zongkai;LU Jinlei;BO Yuming;WANG Jun;TANG Zhaolie;MIIT Key Laboratory of Advanced Solid Laser,Nanjing University of Science and Technology;National Key Laboratory of Transient Physics,Nanjing University of Science and Technology;
  • 关键词:潜载随动系统 ; 扰动特征 ; 复合轴 ; 跟瞄 ; 分离涡 ; 压力矩脉动
  • 英文关键词:submarine-borne servo system;;perturbation characteristic;;compound axis;;tracking and sighting;;separated vortex;;pressure moment pulsation
  • 中文刊名:BIGO
  • 英文刊名:Acta Armamentarii
  • 机构:南京理工大学先进固体激光工业和信息化部重点实验室;南京理工大学瞬态物理国家重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:兵工学报
  • 年:2019
  • 期:v.40;No.265
  • 基金:国家自然科学基金项目(11702139);; 先进固体激光工业和信息化部重点实验室开放基金项目(30918014115-009)
  • 语种:中文;
  • 页:BIGO201904019
  • 页数:11
  • CN:04
  • ISSN:11-2176/TJ
  • 分类号:168-178
摘要
当潜艇在水下高速行进时,海水会在潜艇表面形成脱体边界层和分离涡,大尺度分离涡的生成和脱体会引起潜艇力与力矩的大幅度波动,从而影响潜载激光武器随动系统的跟瞄精度与毁伤效能。以潜载激光武器粗精复合轴跟瞄系统为研究对象,分析了潜艇流噪声对粗、精两级跟踪输出误差的影响。基于流体力学基本控制方程,通过层次结构网格下的有限体积法分析了1×107雷诺数下6°偏航角潜艇的流体动力学特性,并通过坐标解算将流体对艇体的扰动转化到光轴坐标系;获得了粗、精复合轴随动系统的传递函数,搭建了闭环控制器,获得了粗、精通道对特征输入信号的时域响应特性;分析了粗、精复合轴随动系统对潜艇流场扰动输出误差的补偿效果,并从流场演化和压力矩脉动层面分析了大尺度分离涡对跟瞄输出误差的影响。研究结果表明:粗、精复合轴随动控制系统可以有效补偿潜艇扰动带来的光轴输出误差,方位角、俯仰角的波动和跟瞄输出误差主要由围壳端面产生大尺度分离的梢涡引起的压力矩脉动造成,艇身扰动因其周期较长而对输出误差没有特别的影响。
        A boundary layer and the separated vortexes are formed on the surface of submarine due to the fluid viscous when a submarine moves at high speed under water. The generation and shedding of vortexes would cause the substantial disturbance of force and torque,thus further affecting the tracking and sighting accuracies of servo system of submarine-borne laser weapon as well as the damage effectiveness. The influence of submarine flow noise on the tracking error of compound-axis tracking and sighting system is analyzed. Based on the basic control equations of fluid mechanics and the hierarchical grids,the hydrodynamic characteristics of the submarine at 1 × 107 Reynolds number and 6° yaw angle is numerically simulated by using finite volume method. In order to analyze the interaction between the torque and input error,the pressure torque pulsation of submarine is transferred into the optical axis coordinate system of servo system before control system simulation. The transfer functions of the coarse and fine servo system are deduced,and the closed-loop controllers are designed,by which the time domain response characteristics for the special input signals were obtained. The compensation effect for the disturbance error of flow field around submarine is analyzed. And the influence of large separated vortex on the tracking and sighting errors is explored based on the investigation of flow field evolution. Research results show that the servo system with compound control could effectively compensate the optical axis error caused by flow field disturbance. The fluctuations of azimuth and pitch angles as well as the tracking and sighting errors are mainly origin from the pressure torque pulsation caused by the large scale separated tip vortex around the top of the submarine hull,while the disturbance of submarine body had no special influence on the tracking and sighting error due to a longer pressure moment pulsation period.
引文
[1]NITSCHKE S.Conventional submarine periscopes vs optronic masts:the trend to digitisation[J].Naval Forces,2013,34(4):42-43.
    [2]TILL G.Submarines and their acquisition:a general introduction[M]∥TILL G,LEAN C K S.Naval Modernisation in Southeast Asia,Part Two.New York,NY,US:Palgrave Macmillan,2018:1-13.
    [3]JIMNEZ J M,SMITS A J.Tip and junction vortices generated by the sail of a yawed submarine model at low Reynolds numbers[J].Journal of Fluids Engineering,2011,133(3):034501.
    [4]ASHOK A,VAN BUREN T,SMITS A J.The structure of the wake generated by a submarine model in yaw[J].Experiments in Fluids,2015,56(6):123.
    [5]RAMAPRIAN B R,ZHENG Y.Measurements in rollup region of the tip vortex from a rectangular wing[J].AIAA Journal,1997,35(12):1837-1843.
    [6]KIM S E,RHEE B J,MILLER R W.Anatomy of turbulent flow around DARPA SUBOFF body in a turning maneuver using high-fidelity RANS computations[J].International Shipbuilding Progress,2013,60(1):207-231.
    [7]VAZ G,TOXOPEUS S,HOLMES S.Calculation of manoeuvring forces on submarines using two viscous-flow solvers[C]∥Proceedings of the ASME 2010 29th International Conference on Ocean.Shanghai,China:ASME,2010.
    [8]ZHANG D Y,WU Q H,YAO X L,et al.Design and implementation of active disturbance rejection control for the ship-borne photoelectric tracking servo system[C]∥Proceedings of the 29th Chinese Control and Decision Conference.Chongqin,China:IEEE,2017:3951-3956.
    [9]DENG C,REN W,MAO Y,et al.Plug-in module acceleration feedback control for fast steering mirror-based beam stabilization systems[J].Optical Engineering,2017,56(8):084105-1-084105-6.
    [10]CSENCSICS E,SCHITTER G.System design and control of a resonant fast steering mirror for lissajous-based scanning[J].IEEE/ASME Transactions on Mechatronics,2017,22(5):1963-1972.
    [11]POPINET S.An accurate adaptive solver for surface-tensiondriven interfacial flows[J].Journal of Computational Physics,2009,228(16):5838-5866.
    [12]POPINET S,RICKARD G.A tree-based solver for adaptive ocean modelling[J].Ocean Modelling,2007,16(3):224-249.
    [13]BERTHELSEN P A,FALTINSEN O M.A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries[J].Journal of Computational Physics,2008,227(9):4354-4397.
    [14]GERRIS P S.A tree-based adaptive solver for the incompressible Euler equations in complex geometries[J].Journal of Computational Physics,2003,190(2):572-600.
    [15]ANDERSON J D,WENDT J.Computational fluid dynamics[M].New York,NY,US:Mc Graw-Hill,1995.
    [16]GROVES N C,HUANG T T,CHANG M S.Geometric characteristics of DARPA SUBOFF models:DTRC/SHD-1298-01[R].US:David Taylor Research Center,Ship Hydromechanics Department,1989.
    [17]刘宗凯,薄煜明,王军,等.电磁力滤波与快速反射镜光学补偿在潜艇光轴稳定控制中的应用[J].物理学报,2017,66(8):199-208.LIU Z K,BO Y M,WANG J,et al.Lorentz force filtering and fast steering mirror optical compensation in optical axis stability control for photoelectric mast[J].Acta Physica Sinica,2017,66(8):199-208.(in Chinese)
    [18]LIU H X,ZHOU B M,LIU Z K,et al.Numerical simulation of flow around a body of revolution with an appendage controlled by electromagnetic force[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2013,227(2):303-310.
    [19]LIU H L,THOMAS T H.Summary of DARPA SUBOFF experimental program data:CRDKNSWC/HD-1298-11[R].Bethesda,MD,US:Naval Surface Warfare Center,1998.
    [20]宋彦,高慧斌,张淑梅,等.直流力矩电机力矩波动的自适应补偿控制[J].光学精密工程,2010,18(10):2212-2220.SONG Y,GAO H B,ZHANG S M,et al.Adaptive compensation of torque ripple in DC torque motor[J].Optics and Precision Engineering,2010,18(10):2212-2220.(in Chinese)
    [21]STRM K J,WITTENMARK B.Computer-controlled systems:theory and design[M].New York,NY,US:Courier Corporation,2013:345-375.
    [22]VALERIO D,TEJADO I.Identifying a non-commensurable fractional transfer function from a frequency response[J].Signal Processing,2015,107:254-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700