大功率激光器温度控制系统设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of Temperature Control System for High Power Laser
  • 作者:李曼 ; 庞博 ; 金雁
  • 英文作者:LI Man;PANG Bo;JIN Yan;AVIC Manufacturing Technology Institute;
  • 关键词:激光器 ; PIC ; 温控 ; PT100
  • 英文关键词:laser;;PIC;;temperature control;;PT100
  • 中文刊名:WXDG
  • 英文刊名:Radio Engineering
  • 机构:北京航空制造工程研究所;
  • 出版日期:2018-03-30
  • 出版单位:无线电工程
  • 年:2018
  • 期:v.48;No.347
  • 基金:国家部委基金资助项目
  • 语种:中文;
  • 页:WXDG201804008
  • 页数:5
  • CN:04
  • ISSN:13-1097/TN
  • 分类号:35-39
摘要
为了实现大功率激光器的高功率输出,必须考虑激光晶体的热效应。针对激光晶体的热效应控制提出了一种以PIC为核心的大功率激光器温度控制系统。为了确保大功率激光器在合适的温度下正常运行,系统采用铂丝热电阻PT100、XTR105自带传感器激励源及内置线性化电路变送器组成温度传感器,温度传感器将采集的温度送入PIC单片机进行处理,对水流及电磁阀进行控制,从而达到控温的目的。系统还具备水流、液位监测报警功能,可有效保护大功率激光器关键部件。测试结果表明,系统温度的有效测试范围为0~40℃,控制精度≤±1℃。目前系统已投入工程化应用,可有效提高泵浦模块的效率,改善光束质量。
        To achieve high-power laser high power output,the thermal effects of laser crystals must be considered.A control method for laser crystal thermal effect is proposed with a coolant system for high power laser system,which is built with PIC as its core. To ensure the high-power laser to run normally at the right temperature,the temperature sensor was made up of three components: one platinum wire thermal resistance(PT100),one sensing excitation source(integrated with XTR105),and one built-in linear circuit transmitter.Data collected by the temperature sensor was passed to the PIC,which then sent signals to water valves and solenoid valves,achieving temperature control. In addition,this coolant system could detect and alarm water flow and coolant liquid level,effectively protecting key components of high power laser system.Test results show that the valid test range of the system temperature is from 0 ℃to 40 ℃ and the control precision is within ±1 ℃.This coolant system has already been used with a high power laser.It has been proved that it could effectively improve the efficiency of pumping module and improve beam quality.
引文
[1]GAO P D,ZHANG F Q.Design and Implement tation of High Precision Temperature Control System for Semiconductor Lasers[J].Laser Technology,2014,38(2):270-273.
    [2]吕百达.固体激光器件[M].北京:北京邮电大学出版社,2002:26-27.
    [3]乔彦彬,冯士维,马骁宇,等.Ga As基半导体激光器热特性[J].红外与激光程,2011,40(11):2134-2137.
    [4]李修乾,洪延姬.高能固体激光器现状及发展趋势[J].装备指挥技术学院学报,2004,15(1):101-105.
    [5]BROWN D C,HOFFMAN H J.Thermal,Stress,and Thermooptic Effects in High Average Power Double-clad Silica Fiber Lasers[J].IEEE Journal of Quantum Electronics,2001,37(2):207-217.
    [6]陶毓伽,淮秀兰,李志刚,等.大功率固体激光器冷却技术进展[J].激光杂志,2007,28(2):11-12.
    [7]李适民,黄维玲.激光器件原理与设计[M].北京:国防工业出版,1998.
    [8]ZHANG Y,FENG S,ZHU H,et al.Two-dimen Sional Transient Simulations of the Self-heating Effects in Ga Nbased HEMTs[J].Microelectronics Reliability,2013,53(5):694-700.
    [9]孙文,江泽文,程国祥.固体激光工程[M].北京:科学出版社,2002:352-386.
    [10]刘光裕.高功率半导体激光器冷却系统的改进[J].激光技术与应用,2008,9(2):20-25.
    [11]周乐平,唐大伟,杜小泽,等,大功率激光武器及其冷却系统展[J].激光与电子学进展,2007,44(8):34-38.
    [12]李瑜煜.MI-108型大功率激光器冷却系统的改进[J].冶金丛刊,2000(2):42-43.
    [13]田长青,徐洪波,曹宏章,等.高功率固体激光器冷却技术[J].中国激光,2009,36(7):1686-1692.
    [14]杨中兴.PT100传感器实现多点数字温控现场设备[J].传感世界,2015,21(10):36-40.
    [15]丁欣,姚开武,陈君霞.基于PLC和PT100的闭环温度控制系统的设计[J].企业科技与发展,2016,411(1):37-39.
    [16]陈志文,王玮.基于Pt100铂热电阻的温度变送器设计与实现[J].现代电子技术,2016,319(8):196-199.
    [17]孔令志,梁宁宁,李兆宁.基于单片机PIC 16F877数据采集系统设计[J].光电技术应用,2004,19(6):34-37.
    [18]王颖,党瑞荣.一种基于PIC16F877的温度显示报警装置的设计与实现[J].计量与测试技术,2009,36(11):59-61.
    [19]李萍,张池,张勃.AT89S51单片机原理、开发与应用实例[M].北京:中国电力出版社,2008:163-164.
    [20]徐爱钧,彭秀华.单片机高级语言C51 Windows环境编程与应用[M].北京:电子工业出版社,2001:443-447.
    [21]张小兵,杨斌.固态继电器在开关量输出中的应用[J].矿业安全与保护,2000,27(增刊):70-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700