甘蓝型油菜BnTT3基因的表达与eQTL定位分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Expression Analysis and e QTL Mapping of Bn TT3 Gene in Brassica napus L.
  • 作者:卢坤 ; 曲存民 ; 李莎 ; 赵会彦 ; 王瑞 ; 徐新福 ; 梁颖 ; 李加纳
  • 英文作者:LU Kun;QU Cun-Min;LI Sha;ZHAO Hui-Yan;WANG Rui;XU Xin-Fu;LIANG Ying;and LI Jia-Na;College of Agronomy and Biotechnology, Southwest University;Chongqing Rapeseed Engineering Research Center;
  • 关键词:甘蓝型油菜 ; 种子 ; TT3 ; 重组自交系 ; 表达数量性状位点
  • 英文关键词:Brassica napus L.;;Seeds;;TRANSPARENT TESTA 3;;Recombinant inbred lines(RILs);;Expression quantitative trait locus(e QTL)
  • 中文刊名:XBZW
  • 英文刊名:Acta Agronomica Sinica
  • 机构:西南大学农学与生物科技学院;重庆市油菜工程技术研究中心;
  • 出版日期:2015-08-12 08:37
  • 出版单位:作物学报
  • 年:2015
  • 期:v.41
  • 基金:国家自然科学基金项目(31401412,U1302266);; 国家科技支撑计划项目(2013BAD01B03-12);; 重庆市主要农作物良种创新工程项目(cstc2012gg B80008);; 国家现代农业产业技术体系建设专项(CARS-13);; 国家高技术研究发展计划(863计划)项目(2013AA102602);; 111人才引智基地建设项目(B12006);; 中央高校基本科研业务费专项资金(XDJK2012A009,2362015xk05)资助
  • 语种:中文;
  • 页:XBZW201511017
  • 页数:9
  • CN:11
  • ISSN:11-1809/S
  • 分类号:142-150
摘要
类黄酮途径中,TT3编码的4-二氢黄铜醇还原酶是参与原花色素和花青素合成的关键酶。为了明确该基因可能的上游调控网络,利用黄籽母本GH06和黑籽父本ZY821构建的遗传图谱,以Bn TT3基因在高世代重组自交系群体中随机选取的94个株系花后40 d种子的表达量作为性状,采用复合区间作图法进行e QTL分析。结果共检测到5个表达量相关的e QTL,分别位于A03、A08、A09和C01染色体,单个e QTL解释表型变异的5.22%~24.05%。A09染色体上存在2个主效e QTL,单个e QTL分别解释24.05%和16.55%的表型变异,分别位于标记KS10260~KBr B019I24.15和B055B21-5~KS30880之间,微效e QTL分布于A03、A08和C01染色体上。A09染色体上的2个主效e QTL区间(包含200 kb侧翼序列)与拟南芥、白菜、甘蓝和芸薹族近缘物种基因组同源区段具有很好的共线性关系。基因注释结果表明检测到的e QTL均为trans-QTL,2个主效e QTL区段共包含78个基因,包括MYB51、MYB52和b ZIP5转录因子,可能为Bn TT3基因的上游直接调控因子,对这些基因功能的深入分析将有助于阐明甘蓝型油菜黄籽性状形成的分子调控机制,为黄籽候选基因的克隆筛选奠定基础。
        In flavonoid biosynthesis pathway, the key enzyme dihydroflavonol 4-reductase(DFR) involved in the proanthocyanidin and anthocyanin biosynthesis pathway is encoded by TRANSPARENT TESTA 3(TT3) gene. The objective of this research was to identify the upstream regulatory networks of Bn TT3 using the composite interval mapping method(CIM). Hence, we performed an e QTL analysis for the transcript-level variation of Bn TT3 gene in seeds at 40 days after flower(DAF) in 94 recombinant inbred lines(RILs) derived from a cross between the yellow-seeded female parent GH06 and black-seeded male parent ZY821. Five e QTLs for expression levels of Bn TT3 were detected on four different chromosomes(A03, A08, A09, and C01) in B. napus, accounting for 5.22% to 24.05% of phenotypic variation. Two major e QTLs were found and located among the markers KS10260–KBr B019I24.15 and B055B21-5–KS30880 of chromosome A09, with explained 24.05% and 16.55% of phenotypic variation, respectively. Three minor e QTLs were also detected to be located on chromosomes A03, A08, and C01. The flanking sequences with 200 kb of two major e QTLs on chromosome A09 of B. napus showed well synteny to those of A. thaliana, Brassica rapa, Brassica oleracea and other Brassiceae relatives. Furthermore, the annotation results showed that they belong to the trans-QTL, containing 78 genes in the two trans-QTL regions. Some transcription factors(MYB51, MYB52, and b ZIP5) might be upstream regulatory factors associated with transcriptional regulation of Bn TT3. Therefore, further study about these genes function will be helpful to elucidate the molecular mechanism of the seed coat colour formation, as well as lay the foundation for selecting candidate genes of seed coat colour in B. napus.
引文
[1]Winkel-Shirley B.Flavonoid biosynthesis.A colorful model for genetics,biochemistry,cell biology,and biotechnology.Plant Physiol,2001,126:485–493
    [2]Winkel-Shirley B.Biosynthesis of flavonoids and effects of stress.Curr Opin Plant Biol,2002,5:218–223
    [3]Lepiniec L,Debeaujon I,Routaboul J M,Baudry A,Pourcel L,Nesi N,Caboche M.Genetics and biochemistry of seed flavonoids.Annu Rev Plant Biol,2006,57:405–430
    [4]Routaboul J M,Kerhoas L,Debeaujon I,Pourcel L,Caboche M,Einhorn J,Lepiniec L.Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana.Planta,2006,224:96–107
    [5]Haughn G,Chaudhury A.Genetic analysis of seed coat development in Arabidopsis.Trends Plant Sci,2005,10:472–477
    [6]Zhang J,Lu Y,Yuan Y,Zhang X,Geng J,Chen Y,Cloutier S,Mc Vetty P B,Li G.Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa.Plant Mol Biol,2009,69:553–563
    [7]Padmaja L K,Agarwal P,Gupta V,Mukhopadhyay A,Sodhi Y S,Pental D,Pradhan A K.Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea(AABB).Theor Appl Genet,2014,127:339–347
    [8]Fu F Y,Liu L Z,Chai Y R,Chen L,Yang T,Jin M Y,Ma A F,Yan X Y,Zhang Z S,Li J N.Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments.Genome,2007,50:840–854
    [9]Chai Y R,Lei B,Huang H L,Li J N,Yin J M,Tang Z L,Wang R,Chen L.TRANSPARENT TESTA12 genes from Brassica napus and parental species:cloning,evolution,and differential involvement in yellow seed trait.Mol Genet Genom,2009,281:109–123
    [10]Stein A,Wittkop B,Liu L,Obermeier C,Friedt W,Snowdon R J.Dissection of a major QTL for seed colour and fibre content in Brassica napus reveals colocalization with candidate genes for phenylpropanoid biosynthesis and flavonoid deposition.Plant Breed,2013,132:382–389
    [11]Chen A H,Chai Y R,Li J N,Chen L.Molecular cloning of two genes encoding cinnamate 4-hydroxylase(C4H)from oilseed rape(Brassica napus).J Biochem Mol Biol,2007,40:247–260
    [12]Wei Y L,Li J N,Lu J,Tang Z L,Pu D C,Chai Y R.Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis.Mol Biol Rep,2007,34:105–120
    [13]Xu B B,Li J N,Zhang X K,Wang R,Xie L L,Chai Y R.Cloning and molecular characterization of a functional flavonoid3'-hydroxylase gene from Brassica napus.J Plant Physiol,2007,164:350–363
    [14]Jansen R C,Nap J P.Genetical genomics:the added value from segregation.Trends Genet,2001,17:388–391
    [15]陈颖,汪旭升,许玲莉,沈勤,王晓冬,陆璐.基因表达数量性状定位的研究进展.生命科学,2009,21:38–42Chen Y,Wang X S,Xu L L,Shen Q,Wang X D,Lu L.Advance in study of gene expression quantitative trait loci(e QTL).Chin Bull Life Sci,2009,21:38–42(in Chinese with English abstract)
    [16]Cookson W,Liang L,Abecasis G,Moffatt M,Lathrop M.Mapping complex disease traits with global gene expression.Nat Rev Genet,2009,10:184–194
    [17]Kliebenstein D.Quantitative genomics:analyzing intraspecific variation using global gene expression polymorphisms or e QTLs.Annu Rev Plant Biol,2009,60:93–114
    [18]Michaelson J J,Loguercio S,Beyer A.Detection and interpretation of expression quantitative trait loci(e QTL).Methods,2009,48:265–276
    [19]曲存民,卢坤,刘水燕,卜海东,付福友,王瑞,徐新福,李加纳.黄黑籽甘蓝型油菜类黄酮途径基因SNP位点检测分析.作物学报,2014,40:1914–1924Qu C,Lu K,Liu S Y,Bu H D,Fu F Y,Wang R,Xu X F,Li J N.SNP detection and analysis of genes for flavonoid pathway in yellow-and black-seeded Brassica napus L.Acta Agron Sin,2014,40:1914–1924(in Chinese with English abstract)
    [20]Li T,Jia K P,Lian H L,Yang X,Li L,Yang H Q.Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis.Biochem Biophys Res Commun,2014,454:78–83
    [21]Qu C,Fu F,Lu K,Zhang K,Wang R,Xu X,Wang M,Lu J,Wan H,Tang Z,Li J.Differential accumulation of phenolic compounds and expression of related genes in black-and yellow-seeded Brassica napus.J Exp Bot,2013,64:2885–2898
    [22]Wu G,Zhang L,Wu Y H,Cao Y L,Lu C M.Comparison of five endogenous feference Genes for specific PCR detection and quantification of Brassica napus.J Agric Food Chem,2010,58:2812–2817
    [23]曲存民,付福友,刘列钊,王家丰,毛丽佳,原小燕,谌利,李加纳.甘蓝型油菜胚色素成分的QTL定位.作物学报,2009,35:286–294Qu C M,Fu F Y,Liu L Z,Wang J F,Mao L J,Yuan X Y,Chen L,Li J N.QTL mapping of embryonic pigment components in Brassica napus.Acta Agron Sin,2009,35:286–294(in Chinese with English abstract)
    [24]曲存民,付福友,卢坤,谢景梅,刘晓兰,黄杰恒,李波,王瑞,谌利,唐章林,李加纳.不同环境中甘蓝型油菜种皮木质素含量的QTL定位.作物学报,2011,37:1398–1405Qu C M,Fu F Y,Lu K,Xie,J M,Liu X L,Huang J H,Li B,Wang R,Chen L,Tang Z L,Li J N.Identification of QTLs for lignin content of seed coat in Brassica napus L.in different environments.Acta Agron Sin,2011,37:1398–1405(in Chinese with English abstract)
    [25]Lander E S,Botstein D.Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics,1989,121:185–199
    [26]刘仕芸,黄艳岚,张树珍.植物花青素生物合成中的调控基因.植物生理学通讯,2006,42:747–754Liu S Y,Huang Y L,Zhang S Z.Regulatory gene of anthocyanin biosynthesis in plant.Plant Physiol Commun,2006,42:747–754(in Chinese with English abstract)
    [27]沈忠伟,许昱,夏犇,李建粤.植物类黄酮次生代谢生物合成相关转录因子及其在基因工程中的应用.分子植物育种,2008,6:542–548Shen Z W,Xu Y,Xia B,Li J Y.Transcription factors involved in plant flavonoid biosynthesis of secondary metabolismand its application in genetic engineering.Mol Plant Breed,2008,6:542–548(in Chinese with English abstract)
    [28]Qi T,Song S,Ren Q,Wu D,Huang H,Chen Y,Fan M,Peng W,Ren C,Xie D.The jasmonate-ZIM-domain proteins interact with the WD-Repeat/b HLH/MYB complexes to regulate Jasmonatemediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana.Plant Cell,2011,23:1795–1814
    [29]Marles M,Gruber M Y.Histochemical characterisation of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae.J Sci Food Agric,2004,84:251–262
    [30]叶小利,李加纳,唐章林,梁颖,谌利.甘蓝型油菜种皮色泽及相关性状的研究.作物学报,2001,27:550–556Ye X L,Li J N,Tang Z L,Liang Y,Chen L.Study on seed coat color and related characters of Brassica napus.Acta Agron Sin,2001,27:550–556(in Chinese with English abstract)
    [31]Kim S,Binzel M L,Park S,Yoo K S,Pike L M.Inactivation of DFR(Dihydroflavonol 4-reductase)gene transcription results in blockage of anthocyanin production in yellow onions(Allium cepa).Mol Breed,2004,14:253–263
    [32]Furukawa T,Maekawa M,Oki T,Suda I,Iida S,Shimada H,Takamure I,Kadowaki K.The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp.Plant J,2007,49:91–102
    [33]Park K I,Ishikawa N,Morita Y,Choi J D,Hoshino A,Iida S.A b HLH regulatory gene in the common morning glory,Ipomoea purpurea,controls anthocyanin biosynthesis in flowers,proanthocyanidin and phytomelanin pigmentation in seeds,and seed trichome formation.Plant J,2007,49:641–654
    [34]Marles M,Gruber M Y,Scoles G J,Muir A D.Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus.Phytochemistry,2003,62:663–672
    [35]Yan M L,Liu X J,Liu Z S,Guan C Y,Yuan M Z,Xiong X H.Cloning and expression analysis of Dihydroflavonol 4-Reductase gene in Brassica juncea.Acta Agron Sin,2008,34:1–7
    [36]曲存民.甘蓝型油菜种皮色泽形成机理研究.西南大学博士学位论文,重庆,2012.pp 55–62Qu C M.Studies on the Mechanism of Formation of Seed Coat Colour in Brassica napus L.Ph D Disseration of Southwest University,Chongqing,China,2012.pp 55–62(in Chinese with English abstract)
    [37]Frerigmann H,Gigolashvili T.MYB34,MYB51 and MYB122distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana.Mol Plant,2014,7:814–828
    [38]Park M Y,Kang J Y,Kim S Y.Overexpression of At MYB52confers ABA hypersensitivity and drought tolerance.Mol Cells,2011,31:447–454
    [39]Borevitz J O,Xia Y,Blount J,Dixon R A,Lamb C.Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis.Plant Cell,2000,12:2383–2393
    [40]Stracke R,Werber M,Weisshaar B.The R2R3-MYB gene family in Arabidopsis thaliana.Curr Opin Plant Biol,2001,4:447–456
    [41]Lewis D R,Ramirez M V,Miller N D,Vallabhaneni P,Ray W K,Helm R F,Winkel B S,Muday G K.Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks.Plant Physiol,2011,156:144–164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700