微泡浮选中电解质对电解微泡量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Electrolyte on the Amount of Electrolyzed Microbubbles in Microbubble Flotation
  • 作者:乌鹏飞 ; 董宪姝
  • 英文作者:WU Pengfei;DONG Xianshu;College of Mining Engineering, Taiyuan University of Technology;
  • 关键词:电解微泡 ; 电解质 ; 起泡剂
  • 英文关键词:electrolytic microbubble;;electrolyte;;frother
  • 中文刊名:KCBH
  • 英文刊名:Conservation and Utilization of Mineral Resources
  • 机构:太原理工大学矿业工程学院;
  • 出版日期:2019-04-30 15:09
  • 出版单位:矿产保护与利用
  • 年:2019
  • 期:v.39;No.220
  • 基金:国家自然科学基金面上项目—基于滤饼微观结构特性的煤泥动态过滤脱水机理的研究(51674174);; 山西省自然科学基金项目—粘性煤泥多场耦合脱水的粒群运动模拟及水分迁移规律研究(2016D011056)
  • 语种:中文;
  • 页:KCBH201902004
  • 页数:4
  • CN:02
  • ISSN:41-1122/TD
  • 分类号:12-15
摘要
电解微泡浮选是提升微细粒矿物浮选效率的有效方法之一,采用具有代表性的无机金属盐类和起泡剂进行电解试验,探索不同电解质种类、浓度及起泡剂用量对电解微泡量和电能消耗影响效果分析。试验结果表明:Na_2SO_4由于其强酸强碱盐性质,使得电解液中产生大量自由离子,有效提高了电解充气量和电能消耗量,该电解质的最佳使用浓度为2.00~3.00 g/L,而起泡剂的使用不会对电解充气量和电能消耗产生明显影响,但由于其气泡兼并和延长矿化气泡的上升速度,使单位时间内收集的电解微泡量减少。
        Electrolytic microbubble flotation is one of the effective methods to improve the flotation efficiency of micro-fine minerals. In this paper, several representative inorganic metal salts and frother were chosen for electrolytic flotation test to investigate the effect of electrolyte types and concentrations and frother dosage on the amounts of electrolytic microbubbles and power consumption. The test results showed that Na_2SO_4 produced a large amount of free ions in the electrolyte due to its strong acid and alkali salt properties, which effectively increased the electrolysis aeration rate and electric energy consumption. And the optimum concentration of Na_2SO_4 was 2.00~3.00 g/L. However, the frother had no effect on the electrolysis aeration rate and power consumption, but the use of frother would prolong the bubble coalescence time and decrease the rise rate of mineralized bubbles, which led to the reduction of the amount of electrolytic microbubbles collected per unit time.
引文
[1] M.S.K.A.Sarkar,S.W.Donne,G.M.Evans.Utilization of hydrogen in electroflotation of silica [J].Advanced powder technology,2011(22):482-492.
    [2] 周凌峰,张强.气泡尺寸变化对微细粒浮选效果的研究[J].有色金属(选矿部分),2005(3):21-23.
    [3] Prasad Chandran,Shamit Bakshin,Dhiman Chatterjee.Study on the characteristics of hydrogen bubble formation and its transport during electrolysis of water[J].Department of mechanical engineering,2015(138):99-109.
    [4] 杜圣星.电解法强化煤泥浮选过程的试验研究[D].太原:太原理工大学,2012.
    [5] 贺长营,李延锋,张文军,等.新型充气旋流微泡浮选柱结构介绍与分选效果研究[J].矿山机械,2015(3):99-102.
    [6] 刘炯天.旋流—静态微泡柱分选方法及应用(之一)柱分选技术与旋流—静态微泡柱分选方法[J].选煤技术,2000(1):42-44.
    [7] 董宪姝,胡晓洁,屈文山,等.碱性电解质煤电化学强化浮选脱硫最佳工艺条件的研究[J].太原理工大学学报,2009,40(1):35-37.
    [8] 刘华森,阳春华,王雅琳,等.微泡浮选中气泡尺寸影响分析与参数优化[J].矿业工程研究,2009,24(4):58-61.
    [9] 赵伟,李振,周安宁,等.铝电极电浮选阴极的气泡特征及其影响因素研究[J].矿产保护与利用,2018(3):87-92.
    [10] 汪朝晖,廖振方,陈德淑.电浮选过程中气泡行为的研究[J].中南大学学报(自然科学版),2011,42(3):658-663.
    [11] 石晟玮,王江安,蒋兴舟.水中微气泡上浮过程的力学影响因子研究[J].海军工程大学学报,2008,20(3):83-87.
    [12] 谢广元.选矿学[M].徐州:中国矿业大学出版社,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700