利用新型C波段雷达卫星研究南伊内里切克冰川运动特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Motion Characteristics of the South Inilchek Glacier Derived from New C-Band SAR Satellite
  • 作者:张晓博 ; 赵学胜 ; 葛大庆 ; 刘斌
  • 英文作者:ZHANG Xiaobo;ZHAO Xuesheng;GE Daqing;LIU Bin;School of Ecology and Environment,Institute of Disaster Prevention;College of Geoscience and Surveying Engineering,China University of Mining and Technology (Beijing);China Aero Geophysical Survey and Remote Sensing for Land and Resources;
  • 关键词:南伊内里切克 ; 冰川 ; 运动速率 ; Sentinel-1 ; 偏移量追踪
  • 英文关键词:the South Inilchek;;glacier;;motion velocity;;Sentinel-1;;offset-tracking
  • 中文刊名:WHCH
  • 英文刊名:Geomatics and Information Science of Wuhan University
  • 机构:防灾科技学院生态环境学院;中国矿业大学(北京)地球科学与测绘工程学院;中国国土资源航空物探遥感中心;
  • 出版日期:2019-03-05
  • 出版单位:武汉大学学报(信息科学版)
  • 年:2019
  • 期:v.44
  • 基金:国家自然科学基金(41504048)~~
  • 语种:中文;
  • 页:WHCH201903016
  • 页数:7
  • CN:03
  • ISSN:42-1676/TN
  • 分类号:116-122
摘要
利用新型C波段Sentinel-1卫星获取的2015年2月至2017年2月期间的影像数据,研究分析了天山中部南伊内里切克冰川不同时段的运动特征。利用偏移量追踪技术计算不同时间段冰川位移,首先采用三步配准的方法进行主辅影像高精度整体配准,然后基于归一化互相关(normalized cross correlation,NCC)算法通过调整窗口参数精确估算局部偏移量,进一步分离得到冰川移动信息。监测结果表明:(1)在空间分布上,狭长的冰舌区是冰川主要的高速流动区域,冰舌区底部流速小于上部,两侧流速小于中间,末端流速明显减缓。(2)在季节变化上,冰川运动速率与温度变化趋势一致,在5月至8月期间运动速率最快,沿剖面线的最高速率达49 cm/d;在11月至次年2月期间运动最为缓慢,速率为25~30 cm/d左右。(3)在年度变化上,2015年夏季的运动速率比2016年整体高约1~3 cm/d,其他季节则没有明显差异。与高分辨率L波段PALSAR-2影像的监测结果进行定量对比分析时,将冰舌区的像元进行抽稀后统计,得到两种数据获取的运动速率之差的均值为3.48 cm/d,标准差为±3.78 cm/d,证实了南伊内里切克冰川运动监测结果的可靠性。
        This study present the results of measuring the motion characteristics of the South Inilchek glacier with the C-band Sentinel-1 images acquired from February 2015 to February. 2017. During the offsets estimation in offset-tracking method, we firstly adopt three-step method to achieve high precision overall registration, and then change the matched window size to estimate the local offset with the NCC(normalized cross correlation) algorithm, which was further separated to get glacier motion information. The observation results show that the significant high-speed flow area was the ice tongue, where the flow velocity reduced from the upper to the bottom and slowed obviously at the end, and increased from its both sides to the middle. Moreover, the glacier motion velocity had the same trend with the temperature variation seasonally. The glacier tongue moved with the maximum average velocity of 49 cm/d during the period of May to August, and with the slowest moving in the interval from November to February for about 25-30 cm/d. While in terms of annual changes the velocity in the summer of 2015 was higher than that in 2016 as a whole for about 1-3 cm/d, and there was no marked difference in the other seasons. Furthermore, the monitoring result was demonstrated by comparing the results from Sentinel-1 images in quantity with that from high resolution L-band PALSAR-2 images. The statistics of the sparse pixels in the tongue indicated that the average of the velocity difference was 3.48 cm/d and the standard deviation was ±3.78 cm/d, which confirmed the reliability of the results.
引文
[1] Li Zhiguo, Yao Shandong, Tian Lide. Progress in the Research on the Impact of Glacial Change on Water Resources[J]. Journal of Natural Resources, 2008, 23(1):1-8( 李治国, 姚檀栋, 田立德. 国内外冰川变化对水资源影响研究进展[J]. 自然资源学报, 2008, 23(1):1-8)
    [2] Mcavaney B, Covey C, Joussaume S, et al. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2001
    [3] Luckman A, Quincey D, Bevan S. The Potential of Satellite Radar Interferometry and Feature Tracking for Monitoring Flow Rates of Himalayan Glaciers[J]. Remote Sensing of Environment, 2007, 111(2/3):172-181
    [4] Torres R, Snoeij P, Geudtner D, et al. GMES Sentinel-1 Mission [J]. Remote Sensing of Environment, 2012, 120(6): 9-24
    [5] Malenovsk Z, Rott H, Cihlar J, et al. Sentinels for Science: Potential of Sentinel-1, -2, and -3 Missions for Scientific Observations of Ocean, Cryosphere, and Land [J]. Remote Sensing of Environment, 2012, 120(10):91-101
    [6] Erten E, Reigber A, Hellwich O, et al. Glacier Velocity Monitoring by Maximum Likelihood Texture Tracking[J]. IEEE Transactions on Geoscience & Remote Sensing, 2009, 47(2):394-405
    [7] Li Jia, Li Zhiwei, Wang Changcheng, et al. Using SAR Offset-Tracking Approach to Estimate Surface Motion of the South Inylchek Glacier in Tianshan [J]. Chinese Journal of Geophysics, 2013, 56(4):1 226-1 236(李佳, 李志伟, 汪长城,等. SAR偏移量跟踪技术估计天山南依内里切克冰川运动[J]. 地球物理学报, 2013, 56(4):1 226-1 236)
    [8] Aizen V B, Aizen E M, Melack J M, et al. Association Between Atmospheric Circulation Patterns and Firn-Ice Core Records from the Inilchek Glacierized Area, Central Tien Shan, Asia [J]. Journal of Geophysical Research Atmospheres, 2004, 109(D8): 657-678
    [9] Raup B, Racoviteanu A, Khalsa S J S, et al. The GLIMS Geospatial Glacier Database: A New Tool for Studying Glacier Change [J]. Global & Planetary Change, 2007, 56(1):101-110
    [10] Salvi S, Stramondo S, Funning G J, et al. The Sentinel-1 Mission for the Improvement of the Scientific Understanding and the Operational Monitoring of the Seismic Cycle [J]. Remote Sensing of Environment, 2012, 120(10):164-174
    [11] Scambos T A, Dutkiewicz M J, Wilson J C, et al. Application of Image Cross-Correlation to the Mea-surement of Glacier Velocity Using Satellite Image Data [J]. Remote Sensing of Environment, 1992, 42(3):177-186
    [12] Drury M. Sub-Pixel Precision Image Matching for Measuring Surface Displacements on Mass Movements Using Normalized Cross-Correlation [J]. Remote Sensing of Environment, 2011, 115(1):130-142
    [13] Yan S, Guo H, Liu G, et al. Monitoring Muztagh Kuksai Glacier Surface Velocity with L-band SAR Data in Southwestern Xinjiang, China [J]. Environmental Earth Sciences, 2013, 70(7):3 175-3 184
    [14] Strozzi T, Luckman A, Murray T, et al. Glacier Motion Estimation Using SAR Offset-Tracking Procedures [J]. IEEE Transactions on Geoscience & Remote Sensing, 2002, 40(11):2 384-2 391
    [15] Zhai Panmao, Yu Rong, Guo Yanjun, et al. The Strong El Nino in 2015/2016 and Its Dominant Impacts on Global and China’s Climate [J]. Acta Meteorologica Sinica, 2016, 74(3):309-321(翟盘茂, 余荣, 郭艳君,等. 2015/2016年强厄尔尼诺过程及其对全球和中国气候的主要影响[J]. 气象学报, 2016, 74(3):309-321)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700