基于端壁涡流发生器的压气机叶栅角区分离控制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation of Corner Separation Control for Compressor Cascade Based on Endwall Vortex Generator
  • 作者:刘艳明 ; 汪亮 ; 尚东然 ; 朱榕 ; 季路成
  • 英文作者:LIU Yan-ming;WANG Liang;SHANG Dong-ran;ZHU Rong;JI Lu-cheng;School of Aerospace and Engineering,Beijing Institute of Technology;AECC Hunan Aviation Powerplant Research Institute;
  • 关键词:压气机叶栅 ; 涡流发生器 ; 横向二次流 ; 角区分离 ; 流向涡
  • 英文关键词:Compressor cascade;;Vortex generator;;Crosswise secondary flow;;Corner separation;;Streamwise vortex
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:北京理工大学宇航学院;中国航发湖南动力机械研究所;
  • 出版日期:2019-02-14 14:15
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.264
  • 基金:国家自然科学基金(51676015)
  • 语种:中文;
  • 页:TJJS201906011
  • 页数:8
  • CN:06
  • ISSN:11-1813/V
  • 分类号:91-98
摘要
为研究被动式涡流发生器抑制压气机叶栅横向二次流以控制角区分离的作用,设计了在叶栅内部端壁处加装涡流发生器的控制方案,采用数值模拟的方法,详细分析了叶栅流场特性。结果表明:涡流发生器可以有效地抑制叶栅内部横向二次流,改善角区流动,在最佳控制方案中,总压损失系数下降8.1%;放置于叶栅内部的涡流发生器能阻挡气流的横向流动,其尾部产生的流向涡与横向迁移的端壁附面层相互作用,抑制了通道涡向吸力面的发展,并将主流高能流体卷入角区,增加角区流体动量;涡流发生器的长度和高度都会影响流向涡的强度,流向涡的涡核高度与涡流发生器高度一致,最终的控制效果由涡流发生器的长度和高度共同决定,只有当它们被合理选择,控制方案才能获得最佳控制效果。
        In order to study the passive vortex generator to suppress the crosswise secondary flow of thecompressor cascade to control the separation of the corner zone,a control scheme for installing the vortex genera-tor at the inner end wall of the cascade is designed. With the method of numerical simulation,the cascade flowfield characteristics are analyzed in detail. The results show that VG can suppress the crosswise secondary flow ef-fectively,which results in the improvement of corner region flow. In the optimum control scheme,the total pres-sure loss coefficient decreases by 8.1%. The VG placed inside of cascade can resist the crosswise flow and thestreamwise vortex generated by VG can interact with the boundary layer in near end wall region,resulting in limit-ing the development of passage vortex from pressure to suction side. Meanwhile stream-wise vortex entrains highenergy fluid to suction side corner region to increase momentum of corner fluid. Furthermore,the intensity ofstreamwise vortex are influenced by both length and height of VG,and the height of streamwise vortex core issame as the height of VG. Thus,the final control effect is decided by both length and height of VG. Only whenthey are chosen reasonably,the optimal effect can be achieved.
引文
[1] Hah C,Loellbach J. Development of Hub Corner Stall and Its Influence on the Performance of Axial Compressor Blade Rows[J]. Journal of Turbomachinery,1999,121(1):67-77.
    [2] Qi L,Zou Z,Wang P,et al. Control of Secondary Flow Loss in Turbine Cascade by Streamwise Vortex[J]. Computers&Fluids,2012,(54):45-55.
    [3] Denton J D. Loss Mechanismin Turbomachines[R].ASME 93-GT-435.
    [4] Evans S,Hodson H,Hynes T,et al. Controlling Separation on a Simulated Compressor Blade Using Vortex-Generator Jets[J]. Journal of Propulsion and Power,2010,26(4):819-827.
    [5]刘艳明.翼刀控制压气机叶栅二次流的数值研究[D].哈尔滨:哈尔滨工业大学,2004.
    [6] Dorfner C,Hergt A,Nicke E,et al. Advanced Nonaxisymmetric Endwall Contouring for Axial Compressors by Generating an Aerodynamic Separator-Part I:Principal Cascade Design and Compressor Application[J]. Journal of Turbomachinery,2010,132(2).
    [7]钟兢军.弯曲叶片控制扩压叶栅二次流动的实验研究[D].哈尔滨:哈尔滨工业大学,1995.
    [8] Taylor H D. Summary Report on Vortex Generators[R].USA:United Aircraft Corporation,R-05280-9,1950.
    [9] Law C H,Wennerstrom A J,Buzzell W A. The Use of Vortex Generators as Inexpensive Compressor Casing Treatment[R]. SAE 1976-0925.
    [10] Chima R V. Computational Modeling of Vortex Generators for Turbomachinery[R]. ASME 2002-GT-30677.
    [11]李嘉宾,杨巨涛,伊卫林,等.叶栅通道端区横向二次流的涡流发生器控制技术研究[C].北京:中国工程热物理学会热机气动热力学学术会议,2016.
    [12] Agarwl R,Dhamarla A,Narayannan S R,et al. Numerical Investigation on the Effect of Vortex Generator on Axial Compressor Performance[R]. ASME 2014-GT-25329.
    [13] Hergt A,Meyer R,Engel K. The Capability of Influencing Secondary Flow in Compressor Cascades by Means of Passive and Active Method[R]. CEAS 2007-216.
    [14] Hergt A,Meyer R,Müller M,et al. Loss Reduction in Compressor Cascades by Means of Passive Flow Control[R]. ASME 2008-GT-50357.
    [15] Hergt A,Meyer R,Müller M,et al. Effects of Vortex Generator Application on the Performance of a Compressor Cascade[R]. ASME 2010-GT-22464.
    [16] Diaa A M,El-Dosoky M F,Abdel-Hafez O E,et al.Secondary Flow Control on Axial Flow Compressor Cascade Using Vortex Generators[R]. ASME-IMECE,2014-37790.
    [17] Diaa A M,El-Dosoky M F,Abdel-Hafez O E,et al.Boundary Layer Control of an Axial Compressor Cascade Using Nonconventional Vortex Generators[R]. ASMEIMECE,2015-52310.
    [18]季路成,李嘉宾,伊卫林.第三代三维叶片技术思路分析[J].工程热物理学报,2015,36(5):989-994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700