Cu-Al-Ni-Ti合金激光选区成形工艺及其力学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Selective Laser Melting Process and Mechanical Properties of Cu-Al-Ni-Ti Alloy
  • 作者:田健 ; 魏青松 ; 朱文志 ; 党明珠 ; 文世峰
  • 英文作者:Tian Jian;Wei Qingsong;Zhu Wenzhi;Dang Mingzhu;Wen Shifeng;State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology;
  • 关键词:材料 ; 铜基形状记忆合金 ; 激光选区熔化 ; 工艺优化 ; 显微组织 ; 力学性能
  • 英文关键词:materials;;copper-based shape memory alloy;;selective laser melting;;process optimization;;microstructure;;mechanical properties
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:华中科技大学材料成形与模具技术国家重点实验室;
  • 出版日期:2018-11-23 10:16
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.507
  • 基金:武汉市应用基础前沿项目(2018010401011281);; 国家自然科学基金青年基金(51701078);; 中国博士后基金面上项目(2018M632846);; 湖北省教育厅科学研究计划指导性项目(B2016053)
  • 语种:中文;
  • 页:JJZZ201903003
  • 页数:10
  • CN:03
  • ISSN:31-1339/TN
  • 分类号:26-35
摘要
基于激光选区熔化(SLM)工艺制备了一种具有高致密度、高强度和高硬度的Cu-13.5Al-4Ni-0.5Ti形状记忆合金试样。对试样的微观组织进行分析表征,并研究了其在室温和300℃下的拉伸性能。结果表明:当激光能量密度约为110 J·mm~(-3)时,试样的相对密度最大,超过99.5%;试样微观组织中平行延伸的板条状马氏体横跨熔化道生长,晶粒平均尺寸约为43μm,与铸造试样相比,晶粒得到明显细化;试样在常温下的抗拉强度为(541±26) MPa,断后伸长率为(7.63±0.39)%;在300℃下的抗拉强度提高至(611±9) MPa,断后伸长率提高至(10.78±1.87)%,该合金在高温领域具有一定的应用潜力。
        Copper-based shape memory alloys Cu-13.5 Al-4 Ni-0.5 Ti with high relative density, high strength and high hardness are fabricated by selective laser melting(SLM). The microstructures are characterized and the tensile properties at room temperature and 300 ℃ are evaluated, respectively. The results show that the maximum relative density of 99.5% is obtained when the laser input energy is 110 J·mm~(-3). The lath martensite extending in parallel in the microstructure of the sample grows across the melting tracks and the average grain size is about 43 μm, The grain size of the SLM-fabricated sample is smaller than that of the casting sample. The average tensile strength and percentage elongation after fracture of the SLM-fabricated sample are(541±26) MPa and(7.63±0.39)% at room temperature, respectively, and the tensile strength is increased to(611±9) MPa at 300 ℃, and the percentage elongation after fracture is increased to(10.78±1.87)%. The SLM-fabricated alloy shows a good application potential in the high temperature fields.
引文
[1] Jani J M, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design, 2014, 56(4): 1078-1113.
    [2] Morgan N B. Medical shape memory alloy applications: the market and its products[J]. Materials Science and Engineering, 2004, 378(1): 16-23.
    [3] Hartl D J, Lagoudas D C. Simultaneous transformation and plastic deformation in shape memory alloys[J]. Proceedings of SPIE, 2008, 6929: 69291D.
    [4] Liu Y, van Humbeeck J, Stalmans R, et al. Some aspects of the properties of NiTi shape memory alloy[J]. Journal of Alloys and Compounds, 1997, 247(1/2): 115-121.
    [5] Xia W G, Wu X Q, Wei Y P, et al. Mechanical properties of NiTi shape memory alloy processed by laser shock peening[J]. Chinese Journal of Lasers, 2013, 40(11): 1103002. 夏伟光, 吴先前, 魏延鹏, 等. 激光冲击强化对NiTi形状记忆合金力学性质的影响[J]. 中国激光, 2013, 40(11): 1103002.
    [6] Sari U. Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys[J]. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(2): 192-198.
    [7] Liu X J, Wang C P,Ohnuma I, et al. Phase equilibria and phase transformation of the body-centered cubic phase in the Cu-rich portion of the Cu-Ti-Al system[J]. Journal of Materials Research, 2008, 23(10): 2674-2684.
    [8] Weinert K, Petzoldt V. Machining of NiTi based shape memory alloys[J]. Materials Science and Engineering, 2004, 378(1): 180-184.
    [9] Wu S K, Lin H C, Chen C C. A study on the machinability of a Ti49.6Ni50.4 shape memory alloy[J]. Materials Letters, 1999, 40(1): 27-32.
    [10] Pérez-Landazábal J I, Recarte V, Sánchez-Alarcos V, et al. Study of the stability and decomposition process of the β phase in Cu-Al-Ni shape memory alloys[J]. Materials Science and Engineering, 2006, 438(5): 734-737.
    [11] Recarte V, Pérez-Landazábal J I, Nó M L, et al. Study by resonant ultrasound spectroscopy of the elastic constants of the β phase in Cu-Al-Ni shape memory alloys[J]. Materials Science and Engineering, 2004, 370(1): 488-491.
    [12] Saud S N, Bakar T A A, Hamzah E, et al. Effect of quarterly element addition of cobalt on phase transformation characteristics of Cu-Al-Ni shape memory alloys[J]. Metallurgical and Materials Transactions A, 2015, 46(8): 3528-3542.
    [13] Font J, Cesari E, Muntasell J, et al. Thermomechanical cycling in Cu-Al-Ni-based melt-spun shape-memory ribbons[J]. Materials Science and Engineering, 2003, 354(1): 207-211.
    [14] Humbeeck J V, Stalmans R, Chandrasekaran M, et al. On the stability of shape memory alloys[M]//Duerig T W, Melton K N, St?ckel D, et al. Engineering Aspects of Shape Memory Alloys. Amsterdam: Elsevier, 1990: 96-105.
    [15] Sugimoto K, Kamei K, Nakaniwa M. Cu-AI-Ni-Mn: a new shape memory alloy for high temperature applications[M]//Duerig T W, Melton K N, St?ckel D, et al. Engineering Aspects of Shape Memory Alloys. Amsterdam: Elsevier, 1990: 89-95.
    [16] Motoyasu G, Kaneko M, Soda H, et al. Continuously cast Cu-Al-Ni shape memory wires with a unidirectional morphology[J]. Metallurgical and Materials Transactions A, 2001, 32(3): 585-593.
    [17] Long J M, Zhou S Y. Effect of heat treatment on Ms temperature of Cu-26.23Zn-3.92Al-0.033B shape memory alloy[J]. Shanghai Metal (Nonferrous Fascicule), 1989, 10(4): 1-7. 龙晋明, 周善佑. 热处理对Cu-26.23Zn-3.92Al-0.033B形状记忆合金Ms点的影响[J]. 上海金属(有色分册), 1989, 10(4): 1-7.
    [18] Ikai Y, Murakami K, Mishima K. Stability of the shape memory effect-effect of grain size refinement[J]. Journal of Applied Physics, 1982, 43(C4): 785-789.
    [19] Enami K, Takimoto N, Nenno S. Effect of the vanadium addition on the grain size and mechanical properties of the copper-aluminium-zinc shape memory alloys[J]. Journal of Applied Physics, 1982, 43(C4): 773- 778.
    [20] Elst R, van Humbeeck J, Delaey L. Grain refinement of Cu-Zn-Al and Cu-Al-Ni by Ti addition[J]. Materials Science and Technology, 1988, 4(7): 644-648.
    [21] Matthew S P, Cho T R, Hayes P C. Mechanisms of porous iron growth on wustite and magnetite during gaseous reduction[J]. Metallurgical Transactions B, 1990, 21(4): 733-741.
    [22] Dutkiewicz J, Czeppe T, Morgiel J. Effect of titanium on structure and martensic transformation in rapidly solidified Cu-Al-Ni-Mn-Ti alloys[J]. Materials Science and Engineering, 1999, 273/274/275: 703-707.
    [23] Lojen G, GojiM, An?el I. Continuously cast Cu-Al-Ni shape memory alloy properties in as-cast condition[J]. Journal of Alloys and Compounds, 2013, 580: 497-505.
    [24] Cava R D, Bolfarini C, Kiminami C S, et al. Spray forming of Cu-11.85Al-3.2Ni-3Mn (wt%) shape memory alloy[J]. Journal of Alloys and Compounds, 2014, 615: S602-S606.
    [25] Li W, Liu J, Wen S F, et al. Crystal orientation, crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting[J]. Materials Characterization, 2016, 113: 125-133.
    [26] Hu H, Zhou Y, Wen S F, et al. Study on selective laser melting TiB2 reinforced S136 mould steel[J]. Chinese Journal of Lasers, 2018, 45(12): 1202010. 胡辉, 周燕, 文世峰, 等. 激光选区熔化成形TiB2增强S136模具钢的研究[J]. 中国激光, 2018, 45(12): 1202010.
    [27] Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials & Design, 2014, 63: 856-867.
    [28] Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing[J]. Smart Materials and Structures, 2014, 23(10): 104002.
    [29] Meier H, Buff B,Laurischkat R, et al. Increasing the part accuracy in dieless robot-based incremental sheet metal forming[J]. CIRP Annals, 2009, 58(1): 233-238.
    [30] Saedi S, Turabi A S, Andani M T, et al. Thermomechanical characterization of Ni-rich NiTi fabricated by selective laser melting[J]. Smart Materials and Structures, 2016, 25(3): 035005.
    [31] Andani M T, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68: 224-231.
    [32] Gustmann T, Neves A, Kühn U, et al. Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting[J]. Additive Manufacturing, 2016, 11: 23-31.
    [33] Gustmann T, dos Santos J M, Gargarella P, et al. Properties of Cu-based shape-memory alloys prepared by selective laser melting[J]. Shape Memory and Superelasticity, 2017, 3(1): 24-36.
    [34] Gu D D, Shen Y F. Balling phenomena during direct laser sintering of multi-component Cu-based metal powder[J]. Journal of Alloys and Compounds, 2007, 432(1): 163-166.
    [35] Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia, 2015, 85: 74-84.
    [36] Gargarella P, Kiminami C S, Mazzer E M, et al. Phase formation, thermal stability and mechanical properties of a Cu-Al-Ni-Mn shape memory alloy prepared by selective laser melting[J]. Materials Research, 2015, 18(2): 35-38.
    [37] Saud S N, Hamzah E, Abubakar T, et al. Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu-Al-Ni shape memory alloys[J]. Journal of Thermal Analysis and Calorimetry, 2014, 118(1): 111-122.
    [38] da Silva M R, Gargarella P, Gustmann T, et al. Laser surface remelting of a Cu-Al-Ni-Mn shape memory alloy[J]. Materials Science and Engineering, 2016, 661: 61-67.
    [39] Zhang J, Zhou L, Jiang D, et al. High temperature shape memory alloys[J]. Precious Metals, 2001, 21(1): 96-101.
    [40] Sutou Y, Omori T, Kainuma R, et al. Ductile Cu-Al-Mn based shape memory alloys: general properties and applications[J]. Materials Science and Technology, 2008, 24(8): 896-901.
    [41] Huang W. On the selection of shape memory alloys for actuators[J]. Materials & Design, 2002, 23(1): 11-19.
    [42] Ueland S M, Schuh C A. Superelasticity and fatigue in oligocrystalline shape memory alloy microwires[J]. Acta Materialia, 2012, 60(1): 282-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700