硌伤形貌对车轮材料滚动接触疲劳特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Defect Morphologies on Rolling Contact Fatigue Characteristics of Wheel Materials
  • 作者:赵相吉 ; 师陆冰 ; 文健 ; 郭俊 ; 刘启跃
  • 英文作者:ZHAO Xiangji;SHI Lubing;WANG Wenjian;GUO Jun;LIU Qiyue;State Key Laboratory of Traction Power,Southwest Jiaotong University;
  • 关键词:硌伤形貌 ; 车轮材料 ; 滚动接触疲劳 ; 残余应力
  • 英文关键词:defect morphology;;wheel material;;rolling contact fatigue;;residual stress
  • 中文刊名:ZGJX
  • 英文刊名:China Mechanical Engineering
  • 机构:西南交通大学牵引动力国家重点实验室;
  • 出版日期:2019-02-10
  • 出版单位:中国机械工程
  • 年:2019
  • 期:v.30;No.507
  • 基金:国家自然科学基金资助项目(51775455,51575460);; 四川省高校科研创新团队项目(18TD0005)
  • 语种:中文;
  • 页:ZGJX201903006
  • 页数:6
  • CN:03
  • ISSN:42-1294/TH
  • 分类号:30-35
摘要
采用重力摆锤在车轮试样表面冲击出不同形貌的硌伤坑,基于改进后的MMS-2A型微机控制摩擦磨损试验平台,研究了未硌伤车轮以及两种硌伤形貌车轮的滚动接触疲劳特性。结合ABAQUS仿真分析的车轮硌伤后残余应力分布情况,探讨了硌伤坑附近裂纹的萌生及扩展机制。结果表明:与未硌伤车轮相比,车轮硌伤处次表层材料沿踏面垂直方向上出现的残余拉应力有助于促进裂纹的萌生和扩展。相同冲击能下,球形硌伤坑附近裂纹长度和角度均大于道砟形硌伤坑附近裂纹长度和角度。球形硌伤坑边缘次表层裂纹的裂纹面较宽,并沿着45°的扩展角度向内部扩展。
        The various defect morphologies were impacted on wheel rollers by pendulum machine.The rolling contact fatigue damage characteristics of the normal and two kinds of defected wheel materials were investigated using an improved MMS-2Arolling-sliding wear testing machine.The residual stress distributions on wheel materials after impacting were simulated by ABAQUS,and the crack initiations and propagating mechanism were discussed.The results indicate that the residual tensile stress vertical to the wheel tread emerges on subsurface materials,contributes to the crack initiation and growth compared with the normal wheels.The length and angle of cracks around ball defects are both larger than that around ballast defects under the same impact energy conditions.Moreover,the crack surfaces of the subsurface cracks at the edge of the around ball defects are wider and extend internally along the 45°expansion angle.
引文
[1]刘启跃,王文健,周仲荣.高速与重载铁路车轮损伤及预防技术差异研究[J].润滑与密封,2007,32(11):11-14.LIU Qiyue,WANG Wenjian,ZHOU Zhongrong.An Investigation on Difference of Rail Damage and Preventive Technique of High-speed and Heavy-haul Railway[J].Lubrication Engineering,2007,32(11):11-14.
    [2]何成刚,周桂源,王娟,等.曲率半径对车轮滚动接触疲劳性能的影响[J].摩擦学学报,2014,34(3):256-261.HE Chenggang,ZHOU Guiyuan,WANG Juan,et al.Effect of Curve Radius of Rail on Rolling Contact Fatigue Properties of Wheel Steel[J].Tribology,2014,34(3):256-261.
    [3] HUANG Y B,SHI L B,ZHAO X J,et al.On the Formation and Damage Mechanism of Rolling Contact Fatigue Surface Cracks of Wheel/Rail under the Dry Condition[J].Wear,2018,400/401:62-73.
    [4]王文健,郭俊,刘启跃.接触应力对轮轨材料滚动摩擦磨损性能影响[J].摩擦学学报,2011,7(4):352-356WANG Wenjian,GUO Jun,LIU Qiyue.Effect of Contact Stress on Rolling Friction and Wear Behavior of Wheel-rail Materials[J].Tribology,2011,7(4):352-356.
    [5] EKBERG A,AKESSON B,KABO E.Wheel/Rail Rolling Contact Fatigue-probe,Predict,Prevent[J].Wear,2009,267:540-544.
    [6]安博洋,赵鑫,刘超,等.车轮踏面硌伤处的瞬态滚动接触应力分析[J].润滑与密封,2014,39(12):69-79。AN Boyang,ZHAO Xin,LIU Chao,et al.Analysis of Transient Rolling Contact Stresses at Wheel Indentation[J].Lubrication Engineering,2014,39(12):69-79.
    [7] GAO N,DWYER-JOYCE R S,BEYNON J H.Effects of Surface Defects on Rolling Contact Fatigue of 60/40Brass[J].Wear,1999,225:983-994.
    [8] GAO N,DWYER-JOYCE R S.The Effects of Surface Defects on the Fatigue of Water and Oil Lubricated Contacts[J].Proceedings of the Institution of Mechanical Engineers Part J,2000,214:611-626.
    [9] GAO N,DWYER-JOYCE R S,GRIEVE D G.Disc Machine Testing to Assess the Life of Surface-damaged Railway Track[J].Proceedings of the Institution of Mechanical Engineers Part F,2001,215:261-275.
    [10] SEO J W,KWON S K,LEE D H.Effects of Surface Defects on Rolling Contact Fatigue of Rail[J].Procedia Engineering,2011,10:1274-1278.
    [11] STEFANO C,STEVEN C.The Competitive Role of Wear and RCF:Full Scale Experimental Assessment of Artificial and Natural Defects in Railway Wheel Treads[J].Wear,2016,366/367:325-337.
    [12] UIC Code 712-R_2002Rail Defects[S/OL].Paris:International Union of Railways,2002.[2018-09-07].https://kupdf.com/downloadFile/58e7a6b5dc0d60090eda9827.
    [13]赵相吉,马蕾,郭俊,等.干-水态下圆形硌伤对钢轨材料滚动接触疲劳特性影响[J].摩擦学学报,2017,37(4):545-550ZHAO Xiangji,MA Lei,GUO Jun,et al.The Effect of Round Defects on Rolling Contact Fatigue Characteristics of Rail Materials under Dry-wet Conditions[J].Tribology,2017,37(4):545-550.
    [14] TYFOUR W R,BEYNON J H,KAPOOR A.Deterioration of Rolling Contact Fatigue Life of Pearlitic Rail Steel due to Dry-wet Tolling-sliding Line Contact[J].Wear,1996,197:255-265.
    [15]周张义,李芾.焊接残余应力对钢结构疲劳性能影响研究[J].机车电传动,2009(2):24-29.ZHOU Zhangyi,LI Fu.Study on the Effect of Welding Residual Stresses on the Fatigue Behavior of Steel Structures[J].Electric Drive for Locomotives,2009(2):24-29.
    [16]曹世豪,李煦,文良华,等.钢轨表面裂纹扩展方向研究[J].表面技术,2014,43(3):37-42.CAO Shihao,LI Xu,WEN Lianghua,et al.Analysis of Propagation Direction of Rail Surface Crack[J].Surface Technology,2014,43(3):37-42.
    [17] FLETCHER D I.The Influence of Lubrication on the Fatigue of Pearlitic Rail Steel[D].Sheffield:University of Sheffield,1999.
    [18] FLETCHER D I,HYDE P,KAPOOR A.Modelling and Full-scale Trials to Investigate Fluid Pressurisation of Rolling Contact Fatigue Cracks[J].Wear,2008,265:1317-1324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700