煤溶胀对煤/油加氢共炼中煤转化率的影响及机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Coal Swelling on Coal Conversion Rate of Coal/Oil Hydrogenation Co-processing and Its Mechanism
  • 作者:王兴兆 ; 李传 ; 文安 ; 杨腾飞 ; 任志祥 ; 符欣怡
  • 英文作者:WANG Xingzhao;LI Chuan;DENG Wenan;YANG Tengfei;Ren Zhixiang;FU Xinyi;China State Key Laboratory of Heavy Oil Processing,China University of Petroleum;
  • 关键词:煤/油加氢共炼 ; 干基无灰煤转化率 ; 反应残渣 ; 溶胀作用
  • 英文关键词:coal/oil hydrogenation co-processing;;dry base ash free coal conversion rate;;reaction residue;;swelling effect
  • 中文刊名:MTZH
  • 英文刊名:Coal Conversion
  • 机构:中国石油大学(华东)重质油国家重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:煤炭转化
  • 年:2019
  • 期:v.42;No.168
  • 基金:国家自然科学基金青年基金项目(21106186);; 山东省自然科学基金面上项目(ZR2017MB026)
  • 语种:中文;
  • 页:MTZH201902001
  • 页数:7
  • CN:02
  • ISSN:14-1163/TQ
  • 分类号:4-10
摘要
选取安徽褐煤为原料煤,在不同温度下用催化裂化油浆对其进行溶胀处理,再将体系进行加氢共炼反应,以考察煤的溶胀对煤/油加氢共炼反应中干基无灰煤转化率的影响,并通过激光粒度仪、比表面和孔隙度仪、SEM、XRD、FT-IR等分析手段对比了溶胀前后褐煤及反应残渣的组成和结构变化。结果表明:油煤浆中的褐煤在200℃和300℃下均出现溶胀现象,伴随有轻微的转化,但在300℃下褐煤的溶胀现象更为明显,且300℃溶胀处理后进行加氢共炼反应,体系的干基无灰煤转化率由88.67%增至94.58%,反应残渣含量由4.12%降至2.73%。由表征分析可知,溶胀处理后褐煤的平均粒径、比表面积和孔体积增大,表面粗糙程度增加,孔隙结构增多。此外,溶胀处理后的反应残渣与未溶胀处理的反应残渣相比脂肪链变短,支链化程度降低,缩合程度降低,且300℃溶胀后残渣的芳香环取代度提高。证实溶胀处理增加了褐煤与活化氢的接触面积,增多了褐煤的加氢活性位点,有利于促进煤中有机质组分的转化并抑制稠环烃类的缩合,从而提高了转化率,降低了残渣含量。
        In order to investigate the effect of coal swelling on dry base ash free coal conversion rate of coal/oil hydrogenation co-processing reaction,Anhui lignite was selected as raw material for swelling,FCC slurry was used to swell Anhui lignite at different temperatures,and the system was subjected to the reaction.The composition and structure changes of lignite and reaction residue before and after swelling were compared by means of laser particle size analyzer,specific surface area and porosity analyzer,SEM,XRD and FT-IR.Results show that the swelling phenomenon of lignite in coal/oil slurry occures both at 200℃and 300℃,accompanied by slight transformation,but the swelling is more obvious at 300℃.And after swelling treatment at 300℃,the conversion rate of dry base ash free coal increases from 88.67%to 94.58%,the content of reaction residue decreases from 4.12%to 2.73%.According to the characterization analysis,the average particle size,specific surface area and pore volume of lignite increases after swelling treatment,as well as the surface roughness and pore structure quantity.As for reaction residue,after swelling treatment,the content of CH_2/CH_3 becomes lower,the degree of condensation decreases,and after swelling at 300℃,the amount of substitution on aromatic ring increases.It is confirmed that swelling treatment increases the contact area between lignite and activated hydrogen,and the amount of hydrogenation active sites of lignite,then promotes the transformation of organic components and inhibites the condensation of polycyclic hydrocarbons.Thus the conversion rate is improved and the residue content is reduced.
引文
[1]田陆峰.浅谈煤炭直接液化与我国的能源发展[J].煤炭工程,2006(2):76-77.TIAN Lufeng.Comments on Coal Direct Liquefaction and Energy Development in China[J].Coal Engineering,2006(2):76-77.
    [2]张玉卓.中国神华煤直接液化技术新进展[J].中国科技产业,2006(2):34-37.ZHANG Yuzhuo.New Development of China Shenhua Direct Coal Liquefaction Technology[J].Science and Technology Industry of China,2006(2):34-37.
    [3]梁文杰.重质油化学[M].东营:石油大学出版社,2000.LIANG Wenjie.Heavy Oil Chemistry[J].Dongying:University of Petroleum Press,2000.
    [4]钟英竹,靳爱民.渣油加工技术现状及发展趋势[J].石油学报(石油加工),2015,31(2):436-443.ZHONG Yingzhu,JIN Aimin.Present Situation and Progresses of Residue Processing Technology[J].Acta Petrol Sin(Petrol Proc Sec),2015,31(2):436-443.
    [5]朱豫飞.煤油共炼技术的现状与发展[J].洁净煤技术,2013,19(4):68-72.ZHU Yufei.Actuality and Development of Coal and Oil Co-processing Technologies[J].Clean Coal Technology,2013,19(4):68-72.
    [6]金嘉璐,史士东,吴春来.煤油共炼技术的研究和开发[J].洁净煤技术,1996,2(1):25-27.JIN Jialu,SHI Shidong,WU Chunlai.Research and Development of Coal and Oil Co-processing Technologies[J].Clean Coal Technolgy,1996,2(1):25-27.
    [7]郭强,高雄成,艾克利.悬浮床加氢裂化技术在煤油共炼装置的应用[J].中国石油石化,2017(4):45-46.GUO Qiang,GAO Xiongcheng,AI Keli.Utilization of Slurry-bed Hydrocracking Technology on Coal and Oil Co-processing[J].China Petroleum,2017(4):45-46.
    [8]邓文安,孟环爽,杨腾飞,等.油溶性铁镍催化剂在煤/重油加氢共炼中的应用[J].煤炭转化,2017,40(6):21-26.DENG Wenan,MENG Huanshuang,YANG Tengfei,et al.Study on Oil-soluble Iron-nickel Composite Catalyst in Coal/Heavy Oil Co-processing[J].Coal Conversion,2017,40(6):21-26.
    [9]JOSEPH J T.Beneficial Effects of Preswelling on Conversion and Catalytic Activity During Coal Liquefaction[J].Fuel,1991,70(3):459-464.
    [10]HU Haoquan,SHA Guangyan,CHEN Guohua.Effect of Solvent Swelling on Liquefaction of Xinglong Coal at Less Severe Conditions[J].Fuel Processing Technology,2000,68(1):33-43.
    [11]刘先建.淮南煤的结构与反应性研究[D].淮南:安徽理工大学,2005.LIU Xianjian.Research on Structure and Reactivity and Huainan Coal[D].Huainan:Anhui University of Science and Technology,2005.
    [12]高晋生,陈茺,颜涌捷.煤大分子在有机溶剂中的溶解溶胀行为及其交联本性[J].华东理工大学学报,1998(3):318-323.GAO Jinsheng.CHEN Wu,YAN Yongjie.Solubilization and Swelling of Coal and Its Cross Nature[J].Journal of East China University of Science and Technology,1998(3):318-323.
    [13]SHIN Y J,SHEN Y H.Preparation of Coal Slurry with Organic Solvents[J].Chemosphere,2007,68(2):389-393.
    [14]陈茺,许学敏,高晋生,等.氢键在煤大分子溶胀行为中的作用[J].燃料化学学报,1997,25(6):525-527.CHEN Chong,XU Xuemin,GAO Jinsheng,et al.Study on Hydrogen Bonding in Swelling of Coal[J].Journal of Fuel Chemistry and Technology,1997,25(6):525-527.
    [15]管翠诗,王宗贤.两段悬浮床加氢裂化反应研究[J].石油学报(石油加工),2002,18(4):38-42.GUAN Cuishi,WANG Zongxian.Study on Two-stage Suspend Bed Hydrocracking[J].Acta Petrol Sin(Petrol Proc Sec),2002,18(4):38-42.
    [16]王志青,白宗庆,李文,等.吡啶预处理抑制煤热解过程中交联反应的研究[J].燃料化学学报,2008,36(6):641-645.WANG Zhiqing,BAI Zongqing,LI Wen,et al.Suppressing Cross-linking Reactions During Pyrolysis of Lignite Pretreated by Pyridine[J].Journal of Fuel Chemistry and Technology,2008,36(6):641-645.
    [17]YOSHIZAWA N,MARUYAMA K,YAMADA Y,et al.XRD Evaluation of KOH Activation Process and Influence of Coal Rank[J].Fuel,2002,81(13):1717-1722.
    [18]TAKAGI H,MARUYAMA K,YOSHIZAWA N,et al.XRD Analysis of Carbon Stacking Structure in Coal During Heat Treatment[J].Fuel,2004,83(17):2427-2433.
    [19]PAUL P,MICHAEL S,MICHAEL C.Determination of Functional Groups in Coal by Fourier Fransform Interferometry[M].Fourier Transform Infrared Spectra,1985:169-241.
    [20]JOSV Ibarra,EDGAR Mu1oz,RAFAEL Moliner.FTIR Study of the Evolution of Coal Structure During the Coalification Process[J].Organic Geochemistry,1996,24(6):725-735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700