太湖沉积物反硝化功能基因丰度及其与N_2O通量的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Denitrifying Functional Gene Abundance and Its Relation with Sediment N_2O Flux in Taihu Lake
  • 作者:刘德鸿 ; 文帅龙 ; 龚琬晴 ; 钟继承 ; 钟文辉
  • 英文作者:LIU Dehong;WEN Shuailong;GONG Wanqing;ZHONG Jicheng;ZHONG Wenhui;School of Geography Sciences, Nanjing Normal University;State Key Laboratory of Lake Science and Environment/Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;Luoyang Key Laboratory of Symbiotic Microorganism and Green Development/Agricultural College,Henan University of Science and Technology;
  • 关键词:太湖 ; 沉积物 ; N_2O ; 反硝化功能基因
  • 英文关键词:Taihu Lake;;sediment;;N_2O;;denitrifying functional gene
  • 中文刊名:TRYJ
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:南京师范大学地理科学学院;湖泊与环境国家重点实验室/中国科学院南京地理与湖泊研究所;洛阳市共生微生物与绿色发展重点实验室/河南科技大学农学院;
  • 出版日期:2019-01-18
  • 出版单位:生态环境学报
  • 年:2019
  • 期:v.28
  • 基金:国家自然科学基金项目(41371457;41771516;41771286);; 中国科学院重点部署项目(KZZD-EW-10-02-1);; 国家水体污染控制与治理科技重大专项(2013ZX07113001)
  • 语种:中文;
  • 页:TRYJ201901016
  • 页数:7
  • CN:01
  • ISSN:44-1661/X
  • 分类号:140-146
摘要
温室气体N_2O的生成和排放与反硝化功能微生物关系密切,探讨沉积物反硝化微生物功能基因丰度及其与N_2O通量的关系有助于更好地理解沉积物N_2O生成与排放的微生物学机制。以太湖为研究对象,采用定量qPCR(Quantitative PCR)技术测定了太湖沉积物反硝化功能基因(nirK、nirS、norB和nosZ)丰度,阐明了太湖沉积物反消化功能基因丰度的季节变化规律,并分析了反硝化功能基因丰度与沉积物N_2O通量及其他环境因子的关系。结果表明:太湖沉积物反硝化功能基因丰度呈现夏秋季高冬春季低,具有明显的季节变化特征,norB基因丰度最高,均值为9.03×10~9 copies·g~(-1),其次为nir S基因(1.14×10~9copies·g~(-1)),nirK和nosZ基因丰度均值分别为3.04×10~8copies·g~(-1)和1.09×10~8copies·g~(-1)。沉积物TN和NO_2~-是影响反硝化功能基因丰度的重要环境因子。夏秋季沉积物N2O通量为-0.12-0.04nmol·g~(-1)·h~(-1),均值为-0.05nmol·g~(-1)·h~(-1),与反硝化功能基因(nir K、nir S和nir B)丰度呈显著正相关(P<0.05),表明反硝化过程消耗了N_2O。冬春季沉积物N_2O通量为-0.05-0.48 nmol·g~(-1)·h~(-1),均值为0.27 nmol·g~(-1)·h~(-1),与反硝化功能基因丰度不具显著相关性,表明反硝化作用可能不是N_2O产生的主要过程。
        The formation and emission of greenhouse gas N_2O are closely related to denitrifying microorganisms. To explore the relationship between the functional gene abundance of denitrifying microorganisms and N_2O flux can better understand the microbiological mechanism of the formation and emission of N_2O in sediments. Taking the sediments from Taihu Lake as the research object, using quantitative q-PCR technique, we measured the denitrification gene(nirK, nirS, nirB and nosZ) abundance and clarified the seasonal variation of them in the sediments of Taihu Lake, we also analyzed the relationship between denitrification gene abundance and N_2O flux and other key environmental factors. The results showed that the abundance of denitrifying functional genes in sediment presented obviously seasonal variation, and were high in summer and autumn and low in winter and spring.The first and second largest abundance were nor B gene(mean 9.03×10~9 copies·g~(-1)) and nir S gene(1.14×10~9 copies·g~(-1)), respectively. The abundances of nirK and nos Z genes were averagely 3.04×10~8 copies·g~(-1) and 1.09×10~8 copies·g~(-1). TN and NO_2~--N contents were the most important factors affecting the abundance of denitrification genes. In summer and autumn the N_2O flux ranged from-0.12 to 0.04 nmol·g~(-1)·h~(-1), with a mean of -0.05 nmol·g~(-1)·h~(-1). N_2O flux had a significant negative correlation with denitrification gene(nirK,nir S, and nir B) abundance(P<0.05), which indicated that denitrification consumed N_2O. In winter and spring the N_2O flux ranged from -0.05 to 0.48 nmol·g~(-1)·h~(-1), with a mean of 0.27 nmol·g~(-1)·h~(-1). There was no significant correlation between N_2O flux and denitrification gene abundance, indicating that denitrification was not the main process of N_2O production.
引文
ALINSAFI A,ADOUANI N,BLINE F,et al.,2008.Nitrite effect on nitrous oxide emission from denitrifying activated sludge[J].Process Biochemistry,43(6):683-689.
    ANGENENT L T,KELLEY S T,ST A A,et al.,2005.Molecular identification of potential pathogens in water and air of a hospital therapy pool[J].Proceedings of the National Academy of Sciences of the United States of America,102(13):4860-4865.
    BANGE H W,SPYRIDON R,ANDREAE M O,1996.Nitrous oxide in coastal waters[J].Global Biogeochemical Cycles,10(1):197-207.
    BOSTR M B,PETTERSSON A K,AHLGREN I,1989.Seasonal dynamics of a cyanobacteria-dominated microbial community in surface sediments of a shallow,eutrophic lake[J].Aquatic Sciences,51(2):153-178.
    BOUWMAN A F,BEUSEN A H,GRIFFIOEN J,et al.,2013.Global trends and uncertainties in terrestrial denitrification and N2O emissions[J].Philosophical Transactions of the Royal Society of London,368(1621):91-97.
    BURGIN A J,GROFFMAN P M,2015 Soil O2 controls denitrification rates and N2O yield in a riparian wetland[J].Journal of Geophysical Research Biogeosciences,117(G1):1010.
    CAVIGELLI M A,ROBERTSON G P,2000 The Functional Significance of Denitrifier Community Composition in a Terrestrial Ecosystem[J].Ecology,81(5):1402-1414.
    CAYUELA M L,SNCHEZMONEDERO M A,ROIG A,et al.,2013.Biochar and denitrification in soils:when,how much and why does biochar reduce N2O emissions?[J].Scientific Reports,3(7446):1732.
    GARBEVA P,BAGGS E M,PROSSER J I,2007.Phylogeny of nitrite reductase(nirK)and nitric oxide reductase(norB)genes from Nitrosospira species isolated from soil[J].FEMS microbiology letters,266(1):83-89.
    GEETS J,COOMAN M D,WITTEBOLLE L,et al.,2007.Real-time PCRassay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge[J].Applied Microbiology&Biotechnology,75(1):211-221.
    GRNTZIG V,NOLD S C,ZHOU J,et al.,2001.Pseudomonas stutzeri nitrite reductase gene abundance in environmental samples measured by real-time PCR[J].Applied and Environmental Microbiology,67(2):760-768.
    GROFFMAN P M,TIEDJE J M,1989.Denitrification in north temperate forest soils:Relationships between denitrification and environmental factors at the landscape scale[J].Soil Biology&Biochemistry,21(5):621-626.
    HENRY S,BAUDOIN E,L PEZGUTI RREZ J C,et al.,2004.Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR[J].Journal of Microbiological Methods,59(3):327-335.
    HOU J,CAO X,SONG C,et al.,2013.Predominance of ammonia-oxidizing archaea and nirK-gene-bearing denitrifiers among ammonia-oxidizing and denitrifying populations in sediments of a large urban eutrophic lake(Lake Donghu)[J].Canadian Journal of Microbiology,59(7):456-464.
    HOU L J,ZHENG Y L,LIU M,et al.,2014.Anaerobic ammonium oxidation(anammox)bacterial diversity,abundance,and activity in marsh sediments of the Yangtze Estuary[J].Journal of Geophysical Research Biogeosciences,118(3):1237-1246.
    ITOKAWA H,HANAKI K,MATSUO T,2001.Nitrous oxide production in high-loading biological nitrogen removal process under low COD/Nratio condition[J].Water research,35(3):657-664.
    KANDELER E,DEIGLMAYR K,TSCHERKO D,et al.,2006.Abundance of narG,nirS,nirK,and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland[J].Applied and environmental microbiology,72(9):5957-5962.
    KOIKE I,HATTORI A,1978.Denitrification and Ammonia Formation in Anaerobic Coastal Sediments[J].Applied and Environmental Microbiology,35(2):278-282.
    LISA J A,SONG B,TOBIAS C R,et al.,2014.Impacts of freshwater flushing on anammox community structure and activities in the New River Estuary,USA[J].Aquatic Microbial Ecology,72:17-31.
    LIU D H,ZHONG J C,ZHENG X L,et al.,2018.N2O flux and rate of nitrification and denitrification at the sediment-water interface in Taihu Lake,China[J].Water,10(7):911.
    LIU X,CHEN C R,WANG W J,et al.,2013.Soil environmental factors rather than denitrification gene abundance control N2O fluxes in a wet sclerophyll forest with different burning frequency[J].Soil Biology and Biochemistry,57(10):292-300.
    MISHRA R R,SWAIN M R,DANGAR T K,et al.,2012.Diversity and seasonal fluctuation of predominant microbial communities in Bhitarkanika,a tropical mangrove ecosystem in India[J].Revista De Biología Tropical,60(2):909-924.
    MYRSTENER M,JONSSON A,BERGSTR M A K,2016.The effects of temperature and resource availability on denitrification and relative N2Oproduction in boreal lake sediments[J].Journalof Environmental Sciences,47(9):82-90.
    NOGALES B,TIMMIS K N,NEDWELL D B,et al.,2002.Detection and diversity of expressed denitrification genes in estuarine sediments after reverse transcription-PCR amplification from m RNA[J].Applied and Environmental Microbiology,68(10):5017-5025.
    PENG L,NI B J,YE L,et al.,2015.The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge[J].Water Res 73:29-36
    RICH J J,HEICHEN R S,BOTTOMLEY P J,et al.,2003.Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils[J].Applied Environmental Microbiology,69(10):5974-5982.
    SINGH H B,SALAS L J,SHIGEISHI H,2010.The distribution of nitrous oxide(N2O)in the global atmosphere and the Pacific Ocean[J].Tellus,31(4):313-320.
    SOUZA V F,SANTORO A L,WEERELT M V,et al.,2017.Sediment denitrification,DNRA and anammox rates in tropical floodplain lake(Pantanal,Brazil)[J].Oecologia Australis,16(4):734-744.
    VIETEN B,CONEN F,SETH B,et al.,2008.The fate of N2O consumed in soils[J].Biogeosciences,5:129-132
    XU X B,YANG G S,TAN Y,et al.,2016.Ecological risk assessment of ecosystem services in the taihu lake basin of china from 1985 to 2020[J].Science of the Total Environment,554-555:7-16.
    YAO L,JIANG X,CHEN C,et al.,2016.Within-lake variability and environmental controls of sediment denitrification and associated N2Oproduction in a shallow eutrophic lake[J].Ecological Engineering,97:251-257.
    鲍林林,王晓燕,陈永娟,等,2016.北运河沉积物中主要脱氮功能微生物的群落特征[J].中国环境科学,36(5):1520-1529.BAO L L,WANG X Y,CHEN Y J,et al.,2016.Diversity,abundance and distribution of nirS-type denitrifiers and Anmmox bacteria in sediments of Beiyun River[J].China Environmental Science,36(5):1520-1529.
    鲍士旦,2000.土壤农化分析[M].北京:中国农业出版社,49-56,30-34,81-83.BAO S D,2000.Soil and agricultural chemistry analysis[M].Beijing:Chinses Agriculture Press,49-56,30-34,81-83.
    程建华,窦智勇,孙庆业,2016.铜陵市河流沉积物中硝化和反硝化微生物分布特征[J].环境科学,37(4):1362-1370.CHENG J H,DOU Z Y,SUN Q Y,2016.Distribution characteristics of nitrifiers and denitrifiers in the river sediments of Tongling City[J].Environmental Science,37(4):1362-1370.
    冯洁,张克强,陈思,等,2014.土壤N2O吸收和消耗机制及研究进展[J].农业环境科学学报,33(11):2084-2089.FENG J,ZHANG K Q,CHEN S,et al.,2014.Mechanism of N2Ouptake and consumption by soil:A Review[J].Journal of Agro-Environment Science,33(11):2084-2089.
    高嵩涓,曹卫东,白金顺,等,2017.湘南红壤稻田AOA-amoA、narG、nosZ基因丰度及其环境影响因子[J].中国土壤与肥料(1):21-27.GAO S J,CAO W D,BAI J S,et al.,2017.Abundances of AOA-amoA,narG,nosZ genes and their relationships with soil environment factors in red paddy soils in south Human province[J].Soil and Fertilizer Sciences in China(1):21-27.
    顾卿,张旭,叶丹华,等,2016.奉化江底泥碳、氮、硫转化功能基因的定量研究[J].环境污染与防治,38(11):60-67.GU Q,ZHANG X,YE D H,et al.,2016.Quantitative analysis on the functional genes involved in biological transformation of carbon,nitrogen and sulfur in Feng-hua River sediments[J].Environmental Pollution and Control,38(11):60-67.
    李飞跃,王建飞,谢越,等,2012.江苏句容水库农业流域农田如让反硝化作用的研究[J].农业环境科学学报,31(3):638-643.LI F Y,WANG J F,XIE Y,et al.,2012.Denitrciation of farmland soils in the agricultural watershed of Jurong reservior,Jiangsu Province,China[J].Journal of Agro-Environment Sience,31(3):638-643.
    刘新,王友权,徐华成,等,2017.富营养化湖泊藻型及草型区微生物群落对有色可溶有机物组成的影响[J].生态环境学报,26(8):1403-1409.LIU X,WANG Y Q,XU H C,et al.,2017.Effects of microbial communities on the composition of alga-derived and grass-derived chromophoric dissolved organic matter in Eutrophic Lake[J].Ecology and Environmental Sciences,26(8):1403-1409.
    罗跃辉,阮晓红,李荣富,等,2017.太湖西部湖区沉积物厌氧氨氧化潜在速率及其脱氮贡献研究[J].环境科学学报,37(11):4187-4194.LUO Y H,RUAN X H,LI R F,et al.,2017.The study of potential ANAMMOX rate and its contribution to the nitrogen loss in the sediments of west Taihu Lake[J].Acta Scintiae Circumstantiae,37(11):4187-4194.
    孙许超,郭彦海,张士兵,等,2018.生活垃圾焚烧厂周边土壤硝化和反硝化功能基因分布特征及影响因子[J].生态环境学报,27(2):373-380.SUN X C,GUO Y H,ZHANG S B,et al.,2018.Investigation of distribution characteristics of nitrification and denitrification functional genes in soils surrounding a municipal solid waste incineration pland and the relevant influence factors[J].Ecology and Environmental Sciences,27(2):373-380.
    王福芳,屈建航,胡元森,2012.太湖水-沉积物界面磷、pH及碱性磷酸酶的时空特征及相关性[J].生态环境学报,21(5):907-912.WANG F F,QU J H,HU Y S,2012.Spatio-temporal characteristics and correlation of phosphate,pH and alkaline phosphatase on water-sediment interface of Lake Taihu[J].Ecology and Environmental Sciences,21(5):907-912.
    王军,施雨,李子媛,等,2016.生物炭对退化蔬菜地土壤及其修复过程中N2O产排的影响[J].土壤学报,53(3):713-723.WANG J,SHI Y,LI Z Y,et al.,2016.Effects of biochar application on N2O emmsion in degraded vegetable soil and in remeiation process of the soil[J].Acta Pedologica Sinica,53(3):713-723.
    魏复盛,国家环境保护总局,2002.水和废水监测分析方法[M].北京:中国环境科学出版社:254-257,435-438.WEI F S,State Environmental Protection Administration,2002.Water and wastewater monitoring and analysis method[M].Beijing:China Environmental Science Press:254-257,435-438.
    张静蓉,王淑莹,尚会来,等,2010.硝化过程亚硝态氮氧化阶段的N2O产生情况[J].中国给水排水,26(3):25-29.ZHANG J R,WANG S Y,SHNG H L,et al.,2010.Prodution of nitrious oxide from nitrite nitrogen oxidation during nitrification of domestic sewage[J].China Water and Wastewater,26(3):25-29.
    郑燕,侯海军,秦红灵,等,2012.施氮对水稻土N2O释放及反硝化功能基因(narG/nosZ)丰度的影响[J].生态学报,32(11):3386-3393.ZHENG Y,HOU H J,QIN H L,et al.,2012 Effect of N application on the abundance of denitrifying genes(narG/nosZ)and N2O emmission in paddy soil[J].Acta Ecologica Sinica,32(11):3386-3393.
    钟继承,刘国锋,范成新,等,2009.湖泊底泥疏浚环境效应:Ⅲ.对沉积物反硝化作用的影响[J].湖泊科学,21(4):465-473.ZHONG J C,LIU G F,FANG C X,et al.,2009.Environmental effect of sediment dredging in lake:Influence of dredging on denitrification in sediments[J].Journal of Lake Sciences,21(4):465-473.
    朱梦圆,朱广伟,王永平,2011.太湖蓝藻水华衰亡对沉积物氮、磷释放的影响[J].环境科学,32(2):409-415.ZHU M Y,ZHU G W,WANG Y P,2011.Influence of scum of algal bloom on the release of N and P from sediments of Lake Taihu[J].Environmental Science,32(2):409-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700