基于湿度应力场理论的硬石膏岩膨胀试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The swelling tests of anhydrite based on the humidity stress field theory
  • 作者:陈钒 ; 吴建勋 ; 任松 ; 欧阳汛 ; 王亮 ; 范金洋
  • 英文作者:CHEN Fan;WU Jian-xun;REN Song;OUYANG Xun;WANG Liang;FAN Jin-yang;School of Civil and Environment Engineering, University of Science and Technology Beijing;Power China Road Bridge Group Co., Ltd.;State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University;East China Electric Power Design Institute;
  • 关键词:硬石膏岩 ; 湿度应力场 ; 膨胀试验 ; 初始湿度 ; 吸水率
  • 英文关键词:anhydrite rock;;humidity stress field;;swelling test;;initial humidity;;water absorption
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:北京科技大学土木与资源工程学院;中电建路桥集团有限公司;重庆大学煤矿灾害动力学与控制国家重点实验室;华东电力设计院;
  • 出版日期:2018-06-22 15:11
  • 出版单位:岩土力学
  • 年:2018
  • 期:v.39;No.291
  • 基金:国家自然科学基金(No.51074198,No.51774057);; 重庆市研究生科研创新项目(No.CYB15011)~~
  • 语种:中文;
  • 页:YTLX201808002
  • 页数:9
  • CN:08
  • ISSN:42-1199/O3
  • 分类号:14-22
摘要
传统的湿度应力场理论处理硬石膏围岩膨胀问题时,未反映膨胀特性与湿度状态之间的时变关系。以该理论为基础,设计硬石膏岩膨胀试验:不同初始湿度下的膨胀,不同浸水时间的膨胀,以及膨胀后的抗拉强度测试。试验发现:随初始湿度的增加,硬石膏岩膨胀持续的时间增长,最大膨胀应变和应力增大,终止时的吸水率和结晶水率增加,而自由水率近于0;相同初始湿度下,随浸水时间增加,其吸水率先快速后缓慢增加,结晶水率逐渐增大到接近于吸水率,自由水率逐渐减小到接近于0;随吸水率的增加,其最大轴向膨胀应变、最大侧向膨胀应力和抗拉强度都呈增大趋势。根据试验结果,建立了湿度状态时变系列方程以及含时间效应的膨胀本构模型。
        The traditional humidity stress field theory cannot perfectly describe the time-dependent relationship between the swelling state and humidity state when simulating the swelling process of anhydrite rock mass. Based on this theory, the swelling tests on anhydrite rock mass were designed to investigate the swelling with different initial humidities and soaking time. In addition, tensile strength tests were carried out after swelling. The testing results showed that with the increase of initial humidity, the duration time of swelling, the maximal axial swelling strain, and the maximal lateral swelling stress increased. The water absorption rate and crystallisation water rate of anhydrite increased at the end of the test, while the free water rate was close to zero. Under the same initial humidity, with the increase of soaking time, the water absorption rate exhibited a rapid increase first and then slowly grew. The crystallisation water rate gradually increased to the water absorption rate, while the free water rate decreased to close to zero. With the increase of water absorption rate, the maximum axial swelling strain, the maximum lateral swelling stress and the tensile strength increased. Therefore, this study proposed the time-dependent humidity state equations and the time-dependent swelling constitutive model according to the testing results.
引文
[1]蒲文明,陈钒,任松,等.膨胀岩研究现状及其隧道施工技术综述[J].地下空间与工程学报,2016,12(增刊1):232-239.PU Wen-ming,CHEN Fan,REN Song,et al.Research of swelling rock and summarize of tunnel construction[J].Chinese Journal of Underground Space and Engineering,2016,12(Supp.1):232-239.
    [2]范秋雁.膨胀岩与工程[M].北京:科学出版社,2008:11-12.FAN Qiu-yan.Swelling rock and engineering[M].Beijing:Science Press,2008:11-12.
    [3]刘晓丽,王思敬,王恩志,等.含时间效应的膨胀岩膨胀本构关系[J].水利学报,2006:37(2):195-199.LIU Xiao-li,WANG Si-jing,WANG En-zhi,et al.Study on time-dependent swelling constitute relmion of swelling rock[J].Journal of Hydraulic Engineering,2006,37(2):195-199.
    [4]杨庆.膨胀岩与巷道稳定[M].北京:冶金工业出版社,1995:20-21.YANG Qing.Swelling rock and roadway stability[M].Beijing:Metallurgical Industry Press,1995:20-21.
    [5]杨庆,廖国华,吴顺川.膨胀岩三维膨胀本构关系的研究[J].岩石力学与工程学报,1995,14(1):33-38.YANG Qing,LIAO Guo-hua,WU Shun-chuan.The reseach of 3-D sweeling constitutive relation of swelling rock[J].Chinese Journal of Rock Mechanics and Engineering,1995,14(1):33-38.
    [6]左清军,陈可,谈云志,等.基于时间效应的富水泥质板岩隧道围岩膨胀本构模型研究[J].岩土力学,2016,37(5):1357-1364.ZUO Qing-jun,CHEN Ke,TAN Yun-zhi,et al.A time-dependent constitutive model of the water-rich argillaceous slate surrounding a tunnel[J].Rock and Soil Mechanics,2016,37(5):1357-1364.
    [7]缪协兴,茅献彪,卢爱红,等.湿度应力场理论在软岩巷道围岩稳定性控制中的应用[J].矿山压力与顶板管理,2002,19(3):1-2,5.MIU Xie-xing,MAO Xian-biao,LU Ai-hong,et al.Application of the humid stress theory on the soft surrounding rock stability control around coal mining roadway[J].Ground Pressure and Strata Control,2002,19(3):1-2,5.
    [8]詹志雄,文江泉,吴光,等.膨胀岩土体湿度本构模型的探讨[J].地质灾害与环境保护,1998,(2):49-54.ZHAN Zhi-xiong,WEN Jiang-quan,WU Guang,et al.Research on wet constitutive model of swelling and soil mass[J].Journal of Geological Hazards and Environment Preservation,1998,(2):49-54.
    [9]朱珍德,张爱军,张勇,等.基于湿度应力场理论的膨胀岩弹塑性本构关系[J].岩土力学,2004,25(5):700-702.ZHU Zhen-de,ZHANG Ai-jun,ZHANG Yong,et al.Elastoplastic constitutive law of swelling rock based on humidity stress field theory[J].Rock and Soil Mechanics,2004,25(5):700-702.
    [10]郁时炼,茅献彪,卢爱红.湿度场对膨胀岩巷道围岩变形影响规律的研究[J].采矿与安全工程学报,2006,23(4):402-405.YU Shi-lian,MAO Xian-biao,LU Ai-hong.Study of deformation rule of swelling rock roadway under the humidity field[J].Journal of Mining&Safety Engineering,2006,23(4):402-405.
    [11]白冰,李小春.湿度应力场理论的证明[J].岩土力学,2007,28(1):89-92.BAI Bing,LI Xiao-chun.Proof of humidity stress field theory[J].Rock and Soil Mechanics,2007,28(1):89-92.
    [12]曾仲毅,徐帮树,胡世权,等.增湿条件下膨胀土隧道衬砌破坏数值分析[J].岩土力学,2014,35(3):871-880.ZENG Zhong-yi,XU Bang-shu,HU Shi-quan,et al.Numerical analysis of tunnel liner failure mechanism in expansive soil considering water-increased state[J].Rock and Soil Mechanics,2014,35(3):871-880.
    [13]RAUH F.Investigations on the swellng behavior of pur anhydrites[J].Engineering Geology,2007,4(10):741.
    [14]刘艳敏,余宏明,汪灿,等.白云岩层中硬石膏岩对隧道结构危害机制研究[J].岩土力学,2010,32(9):2704-2708,2752.LIU Yan-min,YU Hong-ming,WANG Can,et al.Research on mechanism of damage of anhydrock in dolomite layer to tunnel structure[J].Rock and Soil Mechanics,2010,32(9):2704-2708,2752.
    [15]罗健.含膏岩系及其对隧道工程的影响[J].西南交通大学学报,1978,(1):63-72.LUO Jian.Gypsum-bearing rock group and its effect on tunnel engineering[J].Journal of Southwest Jiaotong University,1978,(1):63-72.
    [16]OLDECOP L,ALONSO E.Modelling the degradation and swelling of clayey rocks bearing calcium-sulphate[J].International Journal of Rock Mechanics&Mining Sciences,2012,54(22):90-102.
    [17]BERDUGO I R,ALONSO E,RAMON A.Extreme expansive phenomena in anhydritic-gypsiferous claystone:the case of Lilla tunnel[J].Géotechnique,2013,63(7):584-612.
    [18]白冷,彭家惠,张建新,等.天然硬石膏水化硬化研究[J].非金属矿,2008,31(4):1000-8098.BAI Leng,PENG Jia-hui,ZHANG Jian-xin,et al.Study on hydration and hardening of natural anhydrite[J].Non-Metallic Mines,2008,31(4):1000-8098.
    [19]姜德义,张军伟,陈结,等.岩盐储库建腔期难溶夹层的软化规律研究[J].岩石力学与工程学报,2014,33(5):865-873.JIANG De-yi,ZHANG Jun-wei,CHEN Jie,et al.Research on softening law of insoluble interlayer during salt cavern building[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(5):865-873.
    [20]任松,文永江,姜德义,等.泥岩夹层软化试验研究[J].岩土力学,2013,34(11):3110-3116.REN Song,WEN Yong-jiang,JIANG De-yi,et al.Experimental research on softening in mudstone interlayer[J].Rock and Soil Mechanics,2013,34(11):3110-3116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700