多变量时间序列中基于克罗内克压缩感知的缺失数据预测算法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Missing Data Prediction Based on Kronecker Compressing Sensing in Multivariable Time Series
  • 作者:郭艳 ; 宋晓祥 ; 李宁 ; 钱鹏
  • 英文作者:GUO Yan;SONG Xiaoxiang;LI Ning;QIAN Peng;Institute of Communications Engineering, Army Engineering University;
  • 关键词:多变量时间序列 ; 缺失数据 ; 克罗内克压缩感知 ; 时域平滑特性 ; 潜在相关性
  • 英文关键词:Multivariable time series;;Missing data;;Kronecker Compressing Sensing(KCS);;Temporal smoothness characteristic;;Potential correlation
  • 中文刊名:DZYX
  • 英文刊名:Journal of Electronics & Information Technology
  • 机构:陆军工程大学通信工程学院;
  • 出版日期:2018-11-21 08:49
  • 出版单位:电子与信息学报
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金(61571463,61371124,61472445);; 江苏省自然科学基金(BK20171401)~~
  • 语种:中文;
  • 页:DZYX201904014
  • 页数:7
  • CN:04
  • ISSN:11-4494/TN
  • 分类号:101-107
摘要
针对现有算法在预测多变量时间序列中的缺失数据时不适用或只适用于缺失数据较少的情况,该文提出一种基于克罗内克压缩感知的缺失数据预测算法。首先,利用多变量时间序列的时域平滑特性和序列之间的潜在相关性从时空两个方面设计了稀疏表示基,从而将缺失数据预测问题建模成稀疏向量恢复问题。模型求解部分,根据缺失数据的位置特点设计了适合当前应用场景且与稀疏表示基相关性低的观测矩阵。接着,从稀疏表示向量是否足够稀疏和感知矩阵是否满足有限等距特性两个方面验证了模型的性能。最后,仿真结果表明,所提算法在数据缺失严重的情况下具有良好的性能。
        In view of the problem that the existing methods are not applicable or are only feasible to the case where only a low ratio of data are missing in multivariable time series, a missing data prediction algorithm is proposed based on Kronecker Compressed Sensing(KCS) theory. Firstly, the sparse representation basis is designed to largely utilize both the temporal smoothness characteristic of time series and potential correlation between multiple time series. In this way, the missing data prediction problem is modeled into the problem of sparse vector recovery. In the solution part of the model, according to the location of missing data, the measurement matrix is designed suitable for the current application scenario and low correlation with the sparse representation basis. Then, the validity of the model is verified from two aspects: Whether the sparse representation vector is sufficiently sparse and the sensing matrix satisfies the restricted isometry property.Simulation results show that the proposed algorithm has good performance in the case where a high ratio of data are missing.
引文
[1]SOWMYA R and SUNEETHA K R.Data mining with big data[C].International Conference on Intelligent Systems and Control,Coimbatore,India,2017:246-250.doi:10.1109/ISCO.2017.7855990.
    [2]JAQUES N,TAYLOR S,SANO A,et al.Multimodal autoencoder:A deep learning approach to filling in missing sensor data and enabling better mood prediction[C].International Conference on Affective Computing&Intelligent Interaction,San Antonio,USA,2017:202-208.doi:10.1109/ACII.2017.8273601.
    [3]BALOUJI E,SALOR Q,and ERMIS M.Exponential smoothing of multiple reference frame components with GPUs for real-time detection of time-varying harmonics and interharmonics of EAF currents[C].IEEE Industry Applications Society Meeting,Cincinatti,USA,2017:1-8.doi:10.1109/IAS.2017.8101815.
    [4]KOZERA R and WILKOLAZKA M.Natural spline interpolation and exponential parameterization for length estimation of curves[C].International Conference of Numerical Analysis&Applied Mathematics,Rhodes,Greece,2017:1-140.
    [5]LAO Wenchao,WANG Ying,CHEN Peng,et al.Time series forecasting via weighted combination of trend and seasonality respectively with linearly declining increments and multiple sine functions[C].International Joint Conference on Neural Networks,Beijing,China,2014:832-837.doi:10.1109/IJCNN.2014.6889609.
    [6]LIPPI M,BERTINI M,and FRASCONI P.Short-term traffic flow forecasting:An experimental comparison of time-series analysis and supervised learning[J].IEEETransactions on Intelligent,Transportation,System,2013,14(2):871-882.doi:10.1109/TITS.2013.2247040.
    [7]STRAUMAN A S,BIANCHI F M,and MIKALSEN K?.Classification of postoperative surgical site infections from blood measurements with missing data using recurrent neural networks[C].International Conference on Biomedical&Health Informatics,Las Vegas,USA,2018:307-310.doi:10.1109/BHI.2018.8333430.
    [8]LI Li,LI Yuebiao,and LI Zhiheng.Efficient missing data imputing for traffic flow by considering temporal and spatial dependence[J].Transportation Research Part C,2013,34(9):108-120.
    [9]LI Yuebiao,LI Zhiheng,LI Li,et al.Comparison on PPCA,KPPCA and MPPCA based missing data imputing for traffic flow[C].Proceedings of IEEE Conference on Intelligent Transportation System,Wuhan,China,2013:1535-1540.
    [10]SHI Weiwei,ZHU Yongxin,and HUANG Tian.Effective prediction of missing data on apache spark over multivariable time series[J].IEEE Transactions on Big Data,2018.doi:10.1109/TBDATA.2017.2719703.
    [11]HADI A and WAHIDAH I.Delay estimation using compressive sensing on WSN IEEE 802.15.4[C].International Conference on Control,Electronics,Renewable Energy and Communications,Bandung,Indonesia,2017:192-197.doi:10.1109/ICCEREC.2016.7814975.
    [12]DUARTEAND M F and BARANIUK R G.Kronecker compressive sensing[J].IEEE Transactions on Image Processing,2012,21(2):494-504.doi:10.1109/TIP.2011.2165289.
    [13]ZHOU Haifei,TAN Liangsheng,GE Fei,et al.Traffic matrix estimation:Advanced-Tomogravity method based on a precise gravity model[J].International Journal of Communication Systems,2015,28(10):1709-1728.doi:10.1002/dac.2787.
    [14]CHEN S S,DONOHO D L,and SAUNDERS M A.Atomic decomposition by basis pursuit[J].SIAM Review,2001,43(1):129-159.doi:10.1137/S003614450037906X.
    [15]TROPP J A and GILBERT A C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.doi:10.1109/TIT.2007.909108.
    [16]CHARTRAND R and YIN W.Iteratively reweighted algorithms for compressive sensing[C].IEEE International Conference on Acoustics,Speech and Signal Processing,Las Vegas,NV,USA,2008:3869-3872.doi:10.1109/ICASSP.2008.4518498.
    [17]AL-SHOUKAIRI M,SCHNITER P,and RAO B D.AGAMP based low complexity sparse Bayesian learning algorithm[J].IEEE Transactions on Signal Processing,2018,66(2):294-308.doi:10.1109/TSP.2017.2764855.
    [18]SAMUEL M.Intel lab data[OL].http://db.csail.mit.edu,2016.
    [19]FONOLLOSA J,SHEIK S,HUERTA R,et al.Reservoir computing compensates slow response of chemo sensor arrays exposed to fast varying gas concentrations in continuous monitoring[J].Sensors&Actuators B Chemical,2015,215:618-629.
    [20]Tropical Atmosphere Ocean.NOAA/Pacific Marine Environmental Laboratory[OL].http://www.pmel.noaa.gov/tao/proj_over/proj_over.html,2016.
    [21]WU Xiaopei and LIU Mingyan.In-situ soil moisture sensing:Measurement scheduling and estimation using compressive sensing[C].ACM/IEEE,International Conference on Information Processing in Sensor Networks,Beijing,China,2012:1-11.doi:10.1109/IPSN.2012.6920949.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700