黑腹果蝇和斑翅果蝇肠道可培养的细菌多样性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Diversity Analysis of Culturable Bacteria in Intestine of Drosophila melanogaster and Drosophila suzukii
  • 作者:高欢欢 ; 吕召云 ; 王咏梅 ; 蒋锡龙 ; 苑东鹏 ; 吴新颖 ; 于毅
  • 英文作者:Gao Huanhuan;Lv Zhaoyun;Wang Yongmei;Jiang Xilong;Yuan Dongpeng;Wu Xinying;Yu Yi;Shandong Academy of Grape;Institute of Plant Protection, Shandong Academy of Agricultural Sciences;Shandong Academy of Agricultural Sciences;
  • 关键词:斑翅果蝇 ; 黑腹果蝇 ; 肠道 ; 共生菌 ; 多样性 ; 发育阶段
  • 英文关键词:Drosophila suzukii;;Drosophila melanogaster;;intestine;;symbiotic bacteria;;diversity;;development stage
  • 中文刊名:ZNTB
  • 英文刊名:Chinese Agricultural Science Bulletin
  • 机构:山东省葡萄研究院;山东农业科学院植物保护研究所;山东省农业科学院;
  • 出版日期:2019-03-25
  • 出版单位:中国农学通报
  • 年:2019
  • 期:v.35;No.516
  • 基金:国家自然科学基金青年科学基金项目(31801750);; 山东省现代农业产业技术体系果品创新团队济南综合试验站(SDAIT-06-21);; 山东省农业科学院农业科技创新工程(CXGC2018E17)
  • 语种:中文;
  • 页:ZNTB201909010
  • 页数:7
  • CN:09
  • ISSN:11-1984/S
  • 分类号:67-73
摘要
为了了解斑翅果蝇Drosophila suzukii和黑腹果蝇D. melanogaster可培养的肠道细菌多样性。本研究将2种果蝇卵中及幼虫、蛹和成虫肠道中的细菌分别分离纯化,并利用16srDNA基因分析的方法鉴定。结果显示,在2种果蝇的不同发育阶段中,卵中的细菌数量最少,而幼虫肠道中最多,且斑翅果蝇中细菌的数量显著多于黑腹果蝇。2种果蝇共分离出31种细菌,以变形菌门细菌为主。斑翅果蝇和黑腹果蝇中细菌的种类分别为20和21种,其中相同种类的细菌为13种。斑翅果蝇肠道内比较稳定的细菌种类为弗氏柠檬酸杆菌Citrobacter freundii、产酸克雷伯菌Klebsiella oxytoca、金黄杆菌属Chryseobacterium sp.、形赖氨酸芽孢杆菌Lysinibacillus fusiformis,黑腹果蝇肠道内比较稳定的细菌种类为醋酸菌Acetobacter thailandicus、类芽孢杆菌Paenibacillus taichungensis、雷氏普罗威登斯Providencia rettgeri、摩氏摩根菌Morganella morganii。因此,不同发育阶段的斑翅果蝇和黑腹果蝇肠道中细菌的数量和种类均有差别。
        To understand the intestinal bacterial diversity in Drosophila suzukii and D. melanogaster, the bacteria in eggs, the intestine of larvae, pupae and adults of two Drosophila species were separated and purified, and identified with 16 S rDNA genetic analysis. The results showed that, the number of bacteria was the lowest in eggs and the highest in larval intestine at different developmental stages of the two Drosophila species. And the number of bacteria in D. suzukii was more than that in D. melanogaster significantly. 31 species of bacteria were isolated from the two Drosophila species, the bacteria of Proteobacteria was the dominant population. The species of bacteria were 20 and 21 in D. suzukii and D. melanogaster, respectively.Therein, there were 13 species in both the two Drosophila species. The stable bacteria in intestine of D. suzukii were Citrobacter freundii, Klebsiella oxytoca, Chryseobacterium sp. and Lysinibacillus fusiformis. While,Acetobacter thailandicus, Paenibacillus taichungensis, Providencia rettgeri and Morganella morganii were stable bacteria in intestine of D. melanogaster. It is concluded that, the number and species of bacteria in D.suzukii and D. melanogaster are different at different development stages.
引文
[1]Dreves A J,Walton V M,Fisher G C.A new pest attacking healthy ripening fruit in Oregon:spotted wing Drosophila:Drosophila suzukii(Matsumura)[J].Extension Service,Oregon State University,2009:1-6.
    [2]Milan N F,Kacsoh B Z,Schlenke T A.Alcohol Consumption as Self-Medication against Blood-Borne Parasites in the Fruit Fly[J].Current Biology,2012,22:488-493.
    [3]Bolda M P,Goodhue R E,Zalom F G.Spotted wing Drosophila:potential economic impact of a newly established pest[J].Journal of Agricultural and Resource Economics,2010,13(3):5-8.
    [4]林清彩,王圣印,周成,等.铃木氏果蝇研究进展[J].江西农业学报,2013,25(6):45-47.
    [5]Mitsui H,Takahashi H K,Kimura M T.Spatial distributions and clutch sizes of Drosophila species ovipositing on cherry fruits of different stages[J].Population Ecology,2006,48:233-237.
    [6]David J R,Vanherrewege J.Adaptation to alcoholic fermentation in Drosophila species:Relationship between alcohol tolerance and larval habitat[J].Comparative Biochemistry Physiology,1983,74:283-288.
    [7]高欢欢,翟一凡,陈浩,等.斑翅果蝇和黑腹果蝇侵害的葡萄微生物多样性的动态变化[J].应用昆虫学报,2017,54(2):309-316.
    [8]Ryu J H,Kim S H,Lee H Y.Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila[J].Science,2008,319:777-782.
    [9]Shi S C,Kim S H,You H.Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling[J].Science,2011,334:670-674.
    [10]Fischer C,Trautman E P,Crawford J M.Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior[J].elife,2017,136(1):1-11.
    [11]Poisot T,Bever J D,Nemri A.A conceptual framework for the evolution of ecological specialisation[J].Ecolgy Letters,2011,14:841-851.
    [12]Becher P G,Flick G,Rozpedowska E.Yeast,not fruit volatiles mediate Drosophila melanogaster attraction,oviposition and development[J].Functional Ecology,2012,26:822-828.
    [13]Atallah J,Teixeira,L,Salazar R.The making of a pest:the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species[J].Proceedings of the Royal Society of London Series B.Biological Science,2014,281:2013-2840.
    [14]Begon M.Yeasts and Drosophila.The Genetics and Biology of Drosophila[M].Academic Press,U.K.,1983:345-384.
    [15]Douglas A E.The microbial dimension in insect nutritional ecology[J].Functional Ecology,2009,23:38-47.
    [16]高欢欢,翟一凡,王海艳,等.韭菜迟眼蕈蚊体内及韭菜根际微生物的多样性分析[J].应用昆虫学报,2015,52(4):1006-1013.
    [17]刘莉,王中康,俞和伟,等.贡嘎蝠蛾幼虫肠道细菌多样性分析[J].微生物学报,2008,48(5):616-622.
    [18]Xiang H,Wei G F,Jia S,et al.Microbial community in the larval midgut of laboratory and fieldpopulations of cotton bollworm(Helicoverpaarmigera)[J].Canadian Journal of Microbiology,2006,52(11):1085-1092.
    [19]相辉,李木旺,赵勇,等.家蚕幼虫中肠细菌群落多样性的PCR-DGGE和16SrDNA文库序列分析[J].昆虫学报,2007,50(3):222-233.
    [20]刘玉升,李明立.东亚飞蝗肠道细菌的研究[J].中国微生态杂志,2007,19(1):34-39.
    [21]Bourtzis K,Miller T A.Insect symbiosis,vol.3.Contemporary topics in entomology[M].Boca Raton,CRC Press,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700