断层突水温度-非线性渗流-应力耦合模型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Temperature-hydrological-mechanical Coupling Model for Fault Water Inrush
  • 作者:刘伟韬 ; 赵吉园 ; 丁希阳
  • 英文作者:LIU Weitao;ZHAO Jiyuan;DING Xiyang;College of Mining and Safety Engineering, Shandong University of Science and Technology;Yangcheng Coal Mine, Shandong Jikuang Luneng Coal and Electric Power Company Ltd;
  • 关键词:断层突水 ; THM耦合 ; 数值模型 ; 非线性流动 ; 温度
  • 英文关键词:fault water inrush;;THM coupling;;numerical model;;nonlinear flow;;temperature
  • 中文刊名:MKAQ
  • 英文刊名:Safety in Coal Mines
  • 机构:山东科技大学矿业与安全工程学院;山东济矿鲁能煤电股份有限公司阳城煤矿;
  • 出版日期:2018-11-13
  • 出版单位:煤矿安全
  • 年:2018
  • 期:v.49;No.533
  • 基金:国家自然科学基金资助项目(51274135);; 国家高技术研究发展计划(863计划)资助项目(2015AA016404-4)
  • 语种:中文;
  • 页:MKAQ201811013
  • 页数:5
  • CN:11
  • ISSN:21-1232/TD
  • 分类号:67-70+76
摘要
为了研究深部矿井高地应力、高承压水压及高地温条件下断层突水过程中的底板承压水运移规律和地温变化规律,运用COMSOL建立温度场(T)-非线性渗流场(H)-应力场(M)耦合模型,其中非线性渗流方程耦合Darcy定律, Brinkman方程和Navier-Stokes方程。结果表明:模型能够很好地描述温度场、渗流场和采动应力场之间的相互作用关系以及底板承压水从含水层经过断层破碎带到达巷道的非线性运移过程;采动应力场和渗流速度对断层带温度场的影响很大,通过监测断层带的温度变化,可以预测断层带渗流场的变化,从而预测断层突水
        In order to investigate the confined water flow laws in the process of fault water-inrush under the condition of high water pressure, high stress and high ground temperature in deep mine,a temperature(T)-hydrological(H)-mechanical(M)coupling model was established by using COMSOL. The nonlinear water flow equation couples Darcy's law, Brinkman equation and Navier-Stokes equation. Results show that this THM coupling model can describe the interaction relationship of temperature field, hydrological field and mechanical field. The nonlinear water flow equation can describe the nonlinear migration of confined water from aquifer through fault fracture zone to roadway. The mining stress and the water velocity have great influence on the temperature of fault zone. The temperature change of fault zone can reflect the change of seepage field in the fault and confined aquifer. Therefore, monitoring the temperature change of fault zone, the fault water inrush can be predicted.
引文
[1]宋振骐,郝建,汤建泉,等.断层突水预测控制理论研究[J].煤炭学报,2013,38(9):1511-1515.
    [2]黄存捍,黄俊杰,李振华.煤层底板隐伏小断层突水数值模拟[J].煤矿安全,2013,44(10):24-26.
    [3]乔伟,胡戈,李文平.综放开采断层活化突水渗流转换试验研究[J].采矿与安全工程学报,2013,30(1):30.
    [4]张培森,赵亚鹏,张明光,等.大倾角断层下煤层开采诱发顶底板及附近含水层应力变化规律的试验研究[J].山东科技大学学报(自然科学版),2017,36(6):60-65.
    [5]白继文,李术才,刘人太,等.深部岩体断层滞后突水多场信息监测预警研究[J].岩石力学与工程学报,2015,34(11):2327-2335.
    [6]Tsang C F.Coupled thermo mechanical and hydro-chemical processes in rock fractures[J]. Review of GeoPhysies,1991, 29(5):37-48.
    [7]孔祥言,李道伦,徐献芝,等.热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展,2005,20(2):269-275.
    [8]盛金昌.多孔介质流-固-热三场全耦合数学模型及数值模拟[J].岩石力学与工程学报,2006,25(S1):3028-3033.
    [9]郭惟嘉,赵金海,尹立明,等.断层突水非线性渗流-应力耦合研究[J].山东科技大学学报(自然科学版),2017,36(6):1-7.
    [10]杨天鸿,陈仕阔,朱万成,等.矿井岩体破坏突水机制及非线性渗流模型初探[J].岩石力学与工程学报,2008(7):1411-1416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700