龙门山中段前缘雷口坡组构造流体地球化学特征与油气保存
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Geochemistry of Tectonic Fluids and Hydrocarbon Preservation of Leikoupo Formation in the Middle Segment of Longmen Mountain
  • 作者:胡迪 ; 楼章华 ; 金爱民 ; 陈超 ; 朱蓉 ; 宋晓波
  • 英文作者:Hu Di;Lou Zhanghua;Jin Aimin;Chen Chao;Zhu Rong;Song Xiaobo;Ocean College, Zhejiang University;Exploration and Production Research Institute of Southwest Branch Company;
  • 关键词:龙门山中段 ; 方解石脉 ; 流体包裹体 ; 流体来源 ; 油气保存
  • 英文关键词:the middle segment of Longmen mountain;;calcite vein;;fluid inclusion;;fluid origins;;hydrocarbon preservation
  • 中文刊名:KJTB
  • 英文刊名:Bulletin of Science and Technology
  • 机构:浙江大学海洋学院;中国石化西南分公司;
  • 出版日期:2018-11-30
  • 出版单位:科技通报
  • 年:2018
  • 期:v.34;No.243
  • 语种:中文;
  • 页:KJTB201811014
  • 页数:8
  • CN:11
  • ISSN:33-1079/N
  • 分类号:66-73
摘要
龙门山中段前缘构造带经历了多期次、多旋回的构造运动,断裂广泛发育,油气保存条件复杂且关键。通过研究前缘带构造裂隙充填方解石脉碳氧锶同位素及流体包裹体特征,分析构造流体成因来源、成岩环境及大气水混入情况,讨论雷口坡组油气保存条件。研究结果表明:龙门山前缘推覆带雷口坡组构造流体来源复杂,既有大气水渗入,也有深部流体混入,脉体成岩环境为渗入水和沉积水混合,秀水-薄阳断裂带附近构造裂隙流体来源于同层沉积水和深部志留系流体,山前带内断裂活动相对不频繁,构造流体多来自与断裂带接触的围岩中。从前山带至山前带,大气水下渗作用逐渐减弱,雷口坡组油气保存条件逐渐变好,远离前山大断裂的山前隐伏带是雷口坡组油气勘探的重点。
        Longmen Mountain thrust belt has experienced a number of times, polycyclic tectonic movement and developed extensively faults, which made the condition of hydrocarbon preservation complicated and critical. According to characterize carbon, oxygen and strontium isotopes and fluid inclusions in calcite veins in tectoclases, we tried to evaluate conditions for hydrocarbon preservation in Leikoupo strata based on analyses of paleo-fluid, including origin, environment and mixing of meteoric water. Results show that the origin of tectonic fluids of Leikoupo formation in the former belt was complicated including meteoric water and fluid in deep. The tectonic fluids was from marine sedimentary environment and deep Silurian strata. The fault activity in foreland tectonic belt was relatively not frequent, which indicated tectonic fluids was from surrounding rock. Meteoric water infiltration decreased progressively and conditions of hydrocarbon preservation in Leikoupo formation improved from orogenic belt to the front of mountain, and then the Longmen mountain front belt which was far away from Xiushui-boyang fault was the major explorative horizon.
引文
[1] 薛钧月. 龙门山构造带中—北段构造流体地球化学特征及其与成藏关系的探讨[D].成都理工大学,2009.
    [2] 汪蕴璞, 林锦璇, 汪林. 论含油气盆地含水系统和水文地质期的划分—以东海西湖凹陷为例[J].地球科学—中国地质大学学报,1995,20 (4): 393-398.
    [3] 林晓英,曾溅辉,杨海军,等.塔里木盆地哈得逊油田石炭系地层水化学特征及成因[J].现代地质,2012,26(2): 377-383.
    [4] Garven G.A hydrogeological model for the formation of the giant oilsands deposits,of the western Canada sedimentary basin[J].American Journal of Science,1989,289: 105-166.
    [5] Bethke C M,Reed J D,Oltz T F,et al.Longrange petroleum migration in the Illions basin[J].AAPG Bulletin,1991,75(5): 925-945.
    [6] 刘崇禧. 水化学找油的理论与应用效果[J].地球化学,1989, 10 (2): 175-180.
    [7] 邓大平. 四川盆地西部三叠系—侏罗系地层水化学特征与油气保存关系[J]. 海相油气地质,2015,20(1):62-70.
    [8] 罗啸泉,李书兵,何秀彬,等.川西龙门山油气保存条件探讨[J].石油实验地质,2010,32(1):10-14.
    [9] 庞河清. 龙门山中段前缘构造特征及油气保存条件研究[D].成都理工大学,2010.
    [10] 赵建成, 刘树根, 孙玮, 等. 龙门山与四川盆地结合部的油气保存条件分析[J]. 岩性油气藏,2011,23(1):79-85.
    [11] Sorkhabi R B.Geochemical signatures of fluid flow in thrust sheets: fluid- inclusion and stable isotope studies of calcite veins in Western Wyoming [M]/ / Sorkhabi R B,Tsuji Y.Faults,fluid flow,and petroleum traps.AAPG Memoir 85,2005:251- 267.
    [12] Cooley M A,Price R A,Kyser T K,et al. Stable-isotope geochemistry of syntectonic veins in Paleozoic car-bonate rocks in the livingstone range anticlinorium and their significance to the thermal and fluid evolution of the southern Canadian foreland thrust and fold belt[J].AAPG Bulletin,2011,95(11):1851- 1882.
    [13] BeboutG E,Anastasio D J,Holl J E.Synorogen-ic crustal fluid infiltration in the Idaho- Montana thrust belt[J].Geophysical Research Letters,2001,28(22): 4295- 4298.
    [14] Eichubl P,Boles J R. Focused fluid flow along faults in the Monterey formation,coastal California[J].Geological Society of America Bulletin,2000,112(11):1667- 1679.
    [15] 王琪,禚喜准,陈国俊,等.延长组砂岩中碳酸盐胶结物氧碳同位素组成特征[J].天然气工业,2007,27(10):28-32.
    [16] Veizer J, Demovic R. Strontium as a tool for facies analysis. Journal of Sedimentary Petrology, 1974, 44:93-115.
    [17] Faure G. Principles of isotope geology [M].New York: John Wiley and Sons.1977, 464.
    [18] Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected limestone and fossils [J]. Geochim et Cosmochim Acta, 1964, 28: 1787-1 816.
    [19] 朱如凯,罗平,罗忠. 塔里木盆地石炭系碳酸盐岩同位素地球化学特征[J]. 新疆石油地质,2002,23(5):382-384.
    [20] 陈陆望,桂和荣,殷晓曦,等.深层地下水18 O与D组成特征与水流场[J].中国矿业大学学报,2008,37(6): 854-858.
    [21] 李文鹏,郝爱兵,郑跃军,等.塔里木盆地区域地下水环境同位素特征及其意义[J].地学前缘,2006,13(1): 191-198.
    [22] 李建森,李廷伟,彭喜明,等.柴达木盆地西部第三系油田水水文地球化学特征[J].石油与天然气地质,2014,35(1): 50-55.
    [23] Palmer M R, Edmond J M. The strontium isotope budget of the modern ocean [J].Earth and Planetary Science Letters, 1989, 92(1):11-26.
    [24] Derry L A, Kaufman A J, Jacobsen S B. Sedimentary cycling and environmental change in the Late Proterozoic:evidence form stable and radiogenic isotopes. Geochimica et Cosmochimica,1992, 56: 1317-1329
    [25] Kaufman A J, Jacobsen S B, Knoll A H. The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth and Planetary Science Letters, 1993, 120: 409-430
    [26] 李龙, 郑永飞, SCHOELL M, 等.德国哈茨山St. Andreasberg 热液矿床方解石巨晶的碳氧同位素研究[J].高校地质学报, 1999, 5(2):183-193.
    [27] 彭建堂, 胡瑞忠, 邓海琳, 等.湘中锡矿山锑矿床的Sr同位素地球化学[J]. 地球化学, 2001, 30(3):248 -254.
    [28] 王国芝, 刘树根, 时华星, 等.伊朗Kashan 区块含烃流体来源的地球化学示踪[J].矿物岩石, 2009, 29(2):72-77.
    [29] McArthur J M, Howarth R J, Bailey T R. Strontium Isotope Strati graph y: LOWESS Version 3: Best Fit to the Marine Sr isotope Curve for 0-509 Ma and Accompanying Look-up Table for Deriving Numerical Age [J]. Journal of Geology, 2001, 109: 155-170.
    [30] Korte C, Kozur H W, Bruckschen P, et al. Strontium isotope evolution of Late Permian and Triassic seawater [J]. Geochimica et Cosmochimica Acta, 2003, 67(1): 47-62
    [31] Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater [J]. Chemical Geology, 1999, 161: 59-88.
    [32] 张秀莲.碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J].沉积学报,1985,3(4): 17-30.
    [33] Urey H C.Oxygen isotopes in nature and in the laboratory[J].Science,1948,108(10): 489-496.
    [34] Epstein S,Buchsbaum R,Lowenstam H A,et al.Revised carbonate-water isotopic temperature scale[J].Geological Society of America Bulletin,1953,64(11):1315-1326.
    [35] Shackleton N J.Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina:Isotopic changes in the ocean during the last glacial[J].Colloques International du Centre National du Recherche Scientifique,1974,219:203 -210.
    [36] 楼章华,金爱民,付孝悦. 海相地层水文地球化学与油气保存条件评价[J]. 浙江大学学报:工学版,2006,40(3):501-505.
    [37] 金宠,陈安清,楼章华,等. 黔南坳陷构造运动与流体响应及油气保存[J]. 浙江大学学报(工学版),2012,(10):1910-1922.
    [38] 赵渝. 龙门山山前中段构造特征及油气成藏条件[D]. 成都理工大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700