α相对高强韧Ti-55531合金强化及断裂机制的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of α Phase on Strengthening and Fracture Mechanisms of High Strength-Toughness Ti-55531 Alloy
  • 作者:潘浩 ; 毛小南 ; 黄朝文 ; 韩栋 ; 王晶 ; 赵永庆 ; 辛社伟
  • 英文作者:Pan Hao;Mao Xiaonan;Huang Chaowen;Han Dong;Wang Jing;Zhao Yongqing;Xin Shewei;Xi'an University of Architecture and Technology;Northwest Institute for Nonferrous Metal Research;State Key Laboratory of Solidification Processing, Northwestern Polytechnical University;
  • 关键词:高强韧Ti-55531合金 ; 微观结构 ; 力学性能 ; 强化机制 ; 断裂机制
  • 英文关键词:high strength-toughness Ti-55531 alloy;;microstructure;;properties;;strengthening mechanism;;fracture mechanism
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:西安建筑科技大学;西北有色金属研究院;西北工业大学凝固技术国家重点实验室;
  • 出版日期:2018-01-15
  • 出版单位:稀有金属材料与工程
  • 年:2018
  • 期:v.47;No.378
  • 基金:国家自然科学基金(51471136);; 国家国际科技合作(中法合作)项目资助(2015DFA151430)
  • 语种:中文;
  • 页:COSE201801019
  • 页数:5
  • CN:01
  • ISSN:61-1154/TG
  • 分类号:107-111
摘要
采用SEM、OM及XRD等分析方法,结合不同的热处理工艺,系统分析了α相的形态、含量及尺寸等特征参数对高强韧Ti-55531合金强化及断裂机制的影响。结果表明:双态组织,随等轴α_p含量降低,尺寸减小,次生片层α_s含量增多,长度变长,宽度更窄;导致合金的强度提高,塑性降低。片层组织,随次生α_s片层的粗化,合金强度和塑性都下降。全β晶粒组织,强度较低,塑性很好。双态和片层组织Ti-55531合金的断裂方式均为穿晶解理、微孔聚集型和沿晶开裂的混合断裂机制;随α_p含量降低和尺寸减小,α_s含量和尺寸增加,微孔聚集断裂数量降低,穿晶解理和沿晶开裂特征数量增加。
        In order to find the influence of α phase on tensile fracture behavior of high strength-toughness Ti-55531 alloy, different heat treatments and analysis methods including SEM, OM and XRD were adopted. Results show that the content of secondary α phase in bimodal microstructures is increased and the scale becomes finer with decreasing of content and scale of primary α phase, so that the strength of alloy increases and ductility decreases. In lamellar microstructures, with coarsening of secondary α phase, both strength and ductility of the alloy are decreased. In full β microstructures, alloys get well in ductility but bad in strength. Both fracture modes of bimodal and lamellar microstructures are mixed modes including transgranular cleavage, microvoid accumulations and intergranular crack fracture. With decreasing of content and scale of primary α phase, the content of secondary α phase increases and the scale is coarsened, the percentage of microvoid accumulations fracture is decreased while percentage of transgranular cleavage and intergranular crack fracture is increased.
引文
[1]Jerome Pora.Aviation Maintenance and Engineering(航空维修与工程)[J],2003(6):50
    [2]Zhou Wei(周伟),Ge Peng(葛鹏),Zhao Yongqing(赵永庆)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2012,41(8):1381
    [3]Chen Wei(陈威),Sun Qiaoyan(孙巧艳),Xiao Lin(肖林)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2011,40(4):708
    [4]Lu Juan(鲁隽).International Aviation(国际航空)[J],2004(1):41
    [5]Cao Chunxiao(曹春晓).Acta Aeronautica et Astronautica Sinica(航空学报)[J],2008(3):701
    [6]Qi Wei(齐炜),Zhang Lei(张磊)Pang Hong(庞洪)et al.China Titanium Industry(中国钛业)[J],2013,3:23
    [7]Fanning J C.Journal of Materials Engineering and Performance[J],2005,14(6):788
    [8]Qin D Y,Liu Y F.Materials Science and Engineering A[J],2013,561:460
    [9]Lütjering G,Williams J C.Titanium 2nd edition[M].New York:Springer,2007
    [10]Li C,Zhang X,Zhou K et al.Materials Science and Engineering A[J],2012,558:668
    [11]Li C,Zhang X,Li Z et al.Materials Science and Engineering A[J],2013,573:75
    [12]Qin D Y,Liu Y F.Materials Science and Engineering A[J]2013,587:100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700