珍珠质文石板片的纳米结构与断裂行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nanostructure and fracture behavior of aragonite tablet in nacre
  • 作者:王胜男 ; 竺鑫桥
  • 英文作者:WANG Sheng-nan;ZHU Xin-qiao;Institute of Chemical Materials,China Academy of Engineering Physics;Institute of Nuclear Physics and Chemistry,China Academy of Engineering Physics;
  • 关键词:珍珠质 ; 文石板片 ; 纳米结构 ; 断裂行为
  • 英文关键词:nacre;;aragonite tablet;;nanostructure;;fracture behavior
  • 中文刊名:SWXZ
  • 英文刊名:Journal of Biology
  • 机构:中国工程物理研究院化工材料研究所;中国工程物理研究院核物理与化学研究所;
  • 出版日期:2018-06-22 10:19
  • 出版单位:生物学杂志
  • 年:2019
  • 期:v.36;No.207
  • 基金:国家自然科学基金青年基金项目(51702300)
  • 语种:中文;
  • 页:SWXZ201901005
  • 页数:5
  • CN:01
  • ISSN:34-1081/Q
  • 分类号:24-28
摘要
贝壳珍珠质作为一种天然的防御材料,具有优异的力学性能。先前的研究认为,珍珠质的高韧性来源于砖墙结构,而其基本组成单元——单个文石板片,并没有承担重要的力学作用。然而近期的研究却发现单个文石板片具有韧性,且这种韧性源自板片内部独特的纳米结构。因此,研究文石板片的纳米结构,揭示其构效关系,有助于完善珍珠质在多尺度下的增韧机制,从而为高性能功能材料的设计和制造提供新思路。利用透射电子显微镜(TEM)对珍珠质文石板片的纳米结构和断裂行为进行了研究。结果表明,文石板片虽呈现单晶的衍射花样,其内部却包裹了大量尺寸不一、形状各异的有机物。对受损珍珠质的TEM分析显示,板片的破断行为受到了晶内有机物的调控。在裂纹偏转、裂纹尖端钝化、晶内有机物变形等多种增韧机制的共同作用下,单个文石板片自身的能量耗散率得到了极大的提升。
        As a natural armor,nacre evolved excellent mechanical properties. It has long been thought that the superior toughness of nacre derives from its brick-and-mortar structure,while its basic component-individual aragonite tablet,has not assume vital mechanical functions. However,recent investigations discovered that individual aragonite tablet exhibits characteristics of toughness,which may correlate with its nanostructure inside. Therefore,investigating the tablet' s nanostructure and unrevealing its structure-function relationships can shed additional light on the design and fabrication of high-performance artificial composites. In the present study,nanostructure and fracture behavior of individual aragonite tablet were investigated by using TEM techniques. Results showed that though diffracting as a single crystal,the tablet contains enormous intracrystalline organics inside. TEM observation of damaged tablets suggested that intracrystalline organics regulate the fracture mode of the tablet to a large extent. By synergistic effect of crack deflection,crack blunting and intracrystalline-organic deformation,the energy dissipation efficiency of individual aragonite tablet are remarkably promoted.
引文
[1]SANDERSON K. Structure:artificial armour[J]. Nature,2015,519(7544):14-15.
    [2]ZHU X Q,WANG S N,YAN X H,et al. Multiple deformation mechanisms in the stone of sea urchin tooth[J]. Crystengcomm,2016,18(30):5718-5723.
    [3]GUR D,PALMER B A,WEINER S,et al. Light manipulation by guanine crystals in organisms:biogenic scatterers,mirrors,multilayer reflectors and photonic crystals[J]. Advanced Functional Materials,2017,27(6):1603514.
    [4]OKUMURA K. Strength and toughness of biocomposites consisting of soft and hard elements:a few fundamental models[J]. MRS Bulletin,2015,40(4):333-339.
    [5]LI H,JIN D,LI R,et al. Structural and mechanical characterization of thermally treated conch shells[J]. JOM,2015,67(4):720-725.
    [6]ZHANG A,CHEN Y,SULLIVAN M A,et al. The growth and mechanical properties of abalone nacre mesolayer[J]. Mechanics of Biological Systems and Materials,2017,6:143-148.
    [7]LI H,YUE Y,HAN X,et al. Plastic deformation enabled energy dissipation in a bionanowire structured armor[J]. Nano letters,2014,14(5):2578-2583.
    [8]BARTHELAT F,TANG H,ZAVATTIERI P D,et al. On the mechanics of mother-of-pearl:a key feature in the material hierarchical structure[J]. Journal of the Mechanics and Physics of Solids,2007,55(2):306-337.
    [9]WANG R,GUPTA H S. Deformation and fracture mechanisms of bone and nacre[J]. Annual Review of Materials Research,2011,41(1):41-73.
    [10]LIN A Y,MEYERS M A. Interfacial shear strength in abalone nacre[J]. Journal of the Mechanical Behavior of Biomedical Materials,2009,2(6):607-612.
    [11]ESPINOSA H D,RIM J E,BARTHELAT F,et al. Merger of structure and material in nacre and bone-perspectives on de novo biomimetic materials[J]. Progress in Materials Science,2009,54(8):1059-1100.
    [12]ESPINOSA H D,JUSTER A L,LATOURTE F J,et al. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials[J]. Nature Communications,2011,2(1):173.
    [13]WANG R Z,SUO Z,EVANS A G,et al. Deformation mechanisms in nacre[J]. Journal of Materials Research,2001,16(9):2485-2493.
    [14]WANG J,CHENG Q,TANG Z. Layered nanocomposites inspired by the structure and mechanical properties of nacre[J]. Chemical Society Reviews,2012,41(3):1111-1129.
    [15]SUN J,BHUSHAN B. Hierarchical structure and mechanical properties of nacre:a review[J]. Rsc Advances,2012,2(20):7617-4632.
    [16]SUMITOMO T,KAKISAWA H,OWAKI Y,et al. In situ transmission electron microscopy observation of reversible deformation in nacre organic matrix[J]. Journal of Materials Research,2008,23(5):1466-1471.
    [17]SMITH B L,SCHAFFER T E,VIANI M,et al. Molecular mechanistic origin of the toughness of natural adhesives,fibres and composites[J]. Nature,1999,399(6738):761-763.
    [18]NI Y,SONG Z,JIANG H,et al. Optimization design of strong and tough nacreous nanocomposites through tuning characteristic lengths[J]. Journal of the Mechanics and Physics of Solids,2015,81:41-57.
    [19]KAKISAWA H,SUMITOMO T. The toughening mechanism of nacre and structural materials inspired by nacre[J]. Science and Technology of Advanced Materials,2011,12(6):064710.
    [20]HUANG Z,LI H,PAN Z,et al. Uncovering high-strain rate protection mechanism in nacre[J]. Scientific Reports,2011,1:148.
    [21]HUANG Z,LI X. Origin of flaw-tolerance in nacre[J]. Scientific Reports,2013,3(4):1693.
    [22]HUANG Z,PAN Z,LI H,et al. Hidden energy dissipation mechanism in nacre[J]. Journal of Materials Research,2014,29(14):1573-1578.
    [23]KATTI K S,MOHANTY B,KATTI D R. Nanomechanical properties of nacre[J]. Journal of Materials Research,2006,21(5):1237-1242.
    [24]LI X. Nanoscale structural and mechanical characterization of natural nanocomposites:Seashells[J]. JOM,2007,59(3):71-74.
    [25]LI X,CHANG W C,CHAO Y J,et al. Nanoscale structural and mechanical characterization of a natural nanocomposite material:The shell of red abalone[J]. Nano Letters,2004,4(4):613-617.
    [26]LI X,XU Z H,WANG R. In situ observation of nanograin rotation and deformation in nacre[J]. Nano Letters,2006,6(10):2301-2304.
    [27]MOHANTY B,KATTI K S,KATTI D R,et al. Dynamic nanomechanical response of nacre[J]. Journal of Materials Research,2006,21(8):2045-2051.
    [28]SUMITOMO T,KAKISAWA H,OWAKI Y,et al. Transmission electron microscopy observation of nanoscale deformation structures in nacre[J]. Journal of Materials Research,2008,23(12):3213-3221.
    [29]SONG J,FAN C,MA H,et al. Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell[J]. Acta Mech Sin,2015,31(3):364-372.
    [30]XU Z H,LI X. Deformation strengthening of biopolymer in nacre[J]. Advanced Functional Materials,2011,21(20):3883-3888.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700