缸筒表面油漆的超声熔盐复合清洗参数优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of Ultrasonic Molten Salt Compound Cleaning Parameters for the Surface Paint of Cylinder
  • 作者:孙一航 ; 贾秀杰 ; 方义 ; 王光存
  • 英文作者:SUN Yi-hang;JIA Xiu-jie;LI Fang-yi;WANG Guang-cun;School of Mechanical Engineering,Shandong University;National Demonstration Center for Experimental Mechanical Engineering Education(Shandong University);XCMG Research Institute;
  • 关键词:超声熔盐复合清洗 ; 再制造液压缸筒 ; 油漆去除 ; 响应面模型 ; 清洗温度 ; 超声功率
  • 英文关键词:Ultrasonic-Molten Salt Compound Cleaning;;Remanufactured Cylinder;;Paint Removal;;Response Surface Model;;Cleaning Temperature;;Ultrasonic Power
  • 中文刊名:JSYZ
  • 英文刊名:Machinery Design & Manufacture
  • 机构:山东大学机械工程学院;机械工程国家级实验教学示范中心山东大学;江苏徐工工程机械研究院有限公司;
  • 出版日期:2019-02-08
  • 出版单位:机械设计与制造
  • 年:2019
  • 期:No.336
  • 基金:国家自然科学基金资助项目—基于超声盐浴的再制造毛坯复合清洗机理与应用(51375278);; 企事业单位委托项目—熔盐超声复合清洗清洗术研究及设备开发(11381704)
  • 语种:中文;
  • 页:JSYZ201902031
  • 页数:7
  • CN:02
  • ISSN:21-1140/TH
  • 分类号:128-133+137
摘要
针对再制造液压缸筒表面厚重油漆难以去除的问题,采用超声熔盐复合清洗技术进行有效清洗。影响复合清洗效果因素较多,选择清洗温度和超声功率进行研究。通过中心复合试验法,以清洗周期和3.5min去污率作为评判标准,拟合试验数据建立回归方程和响应面模型,探究清洗温度和超声功率的影响作用。结果显示:随清洗温度升高,熔盐表面张力变小,化学反应速率提高,清洗周期变短,清洗能力增强;超声功率增大,清洗场内振荡作用变强,使熔盐加速流动,场内各部分温度趋于一致,加速反应进行,增强清洗能力。因此随清洗温度和超声功率提高,复合清洗去除油漆能力增强。通过试验确定超声熔盐复合清洗去除油漆的最优参数为清洗温度(326~336)℃,超声功率为最大值1440W,最优参数下清洗周期为4min,清洗3.5min时去污率为97.5%。
        Aiming at the problem that the thick paint on the remanufactured cylinder surface was hard to remove,ultrasonicmolten salt compound cleaning technology was used to clean the paint. There are many factors that influence the effect of compound cleaning,The cleaning temperature and ultrasonic power were chosento study. By means of the central composite experiment method,the cleaning cycle and 3.5 min removal efficiency were chosen as criterions,and the regression equation and response surface model were established to explore the effects of cleaning temperature and ultrasonic power. The results showed that the surface tension of molten salt decreased and chemical reaction rate accelerated with cleaning temperature increasing,leading to shorter cleaning cycle and stronger cleaning ability. With ultrasonic power increasing,the oscillation effect became stronger,and molten salt flow accelerated,meantime the temperature of each part tended to be consistent,so the reaction accelerated and the cleaning ability was enhanced. Therefore,with the cleaning temperature and ultrasonic power increasing,the compound cleaning ability is enhanced. The optimal parameters are the cleaning temperature of(326~336)℃and ultrasonic power of 1440 W. The cleaning cycle is 4 min and the 3.5 min removal efficiency is 97.5% on the optimal parameters.
引文
[1]Teimourian H,Shabgard M R,Momber A W.De-painting with highspeed water jets:paint removal process and substrate surface roughness[J].Progress in Organic Coatings,2010,69(4):455-462.
    [2]徐滨士.工程机械再制造及其关键技术[J].工程机械,2009,40(8):1-7.(Xu Bin-shi.Remanufacturing of construction machinery and its key technologies[J].Construction Machinery and Equipment,2009,40(8):1-7.)
    [3]徐滨士,刘世参,史佩京.汽车发动机再制造效益分析及对循环经济贡献研究[J].中国表面工程,2005,70(1):1-7.(Xu Bin-shi,Liu Shi-can,Shi Pei-jing.Study on the contribution of engine remanufacturing to the recycle economy[J].China Surface Engineering,2005,70(1):1-7.)
    [4]郭琦,李方义,葛顺鑫.KNO3-NaNO2二元熔盐体系的表面张力及粘度研究[J].功能材料,2014,45(13):36-39.(Guo Qi,Li Fang-yi,Ge Shun-xin.The study of surface tension and viscosity on mixed molten salt of KNO3-NaNO2[J].Function Materials,2014,45(13):36-39.)
    [5]陈思忠.超声波清洗技术与进展[J].洗净技术,2004(2):7-12.(Chen Si-zhong.Ultrasonic cleaning technology and it’s development[J].Cleaning Technology,2004(2):7-12.)
    [6]张能,魏昕,谢小柱.超声加工技术的研究进展及其发展趋势[J].机械设计与制造,2018(4):266-268+272.(Zhang Neng,Wei Xin,Xie Xiao-zhu.Research progress and development trends of the ultrasonic machining technology[J].Machinery Design&Manufacture,2018(4):266-268+272.)
    [7]Webster H G,Falter C L.Process of cleaning metal surfaces and compositions therefor:US,US2458661[P].1949.
    [8]Long Yang-yang,Li Jian-zhi,Douglas H.Timmer.Modeling and optimization of the molten salt cleaning process[J].Journal of Cleaner Production,2014(68):243-251.
    [9]聂延艳.再制造发动机典型污垢的熔盐清洗工艺研究[D].济南:山东大学,2015:1-5.(Nie Yan-yan.Molten salt cleaning process research of remanufacturing engine typical fouling[D].Jinan:Shandong University,2015:1-5.)
    [10]秦顺顺.面向再制造的超声清洗研究及应用[D].济南:山东大学,2012:1-3.(Qin Shun-shun.Study and application of ultrasonic cleaning in remanufacturing[D].Jinan:Shandong University,2012:1-3.)
    [11]周峰,吴欲龙,张宝田.转子泵体超声波清洗质量的理论研究[J].汽车工艺与材料,2018(1):12-16.(Zhou Feng,Wu Yu-long,Zhang Bao-tian.Theoretical study on ultrasonic cleaning quality of rotor pump[J].Automobile Technology&Material,2018(1):12-16.)
    [12]王兴,贾秀杰,李方义.再制造发动机积碳形成机理研究[J].机械工程学报,2017,53(5):69-75.(Wang Xing,Jia Xiu-jie,Li Fang-yi.The research on formation mechanism of carbon deposition in remanufacturing engines[J].Journal of Mechanical Engineering,2017,53(5):69-75.)
    [13]吴贤官,沈志聪,王塘.涂层的热膨胀系数与附着力[J].上海涂料,2006,44(1):39-42.(Wu Xian-guan,Shen Zhi-cong,Wang Tang.Coating thermal expansion coefficient and adhesion[J].Shanghai Coatings,2006,44(1):39-42.)
    [14]姚帅帅,贾秀杰,王兴.面向再制造熔盐清洗积碳机理研究及工艺优化[J].功能材料,2015(18):121-128.(Yao Shuai-shuai,Jia Xiu-jie,Wang Xing.Mechanism research and process optimization about molten salt cleaning carbon deposition of remanufacturing parts[J].Function Materials,2015(18):121-128.)
    [15]孟祥龙,黄细彬.超声清洗技术原理及其应用[J].科技信息:科学教研,2008(22):39-40.(Meng Xiang-long,Huang Xi-bin.The principle and application of ultrasonic cleaning[J].Science&Technology Information,2008(22):39-40.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700