稀土永磁磁粉气流粉碎过程的模拟计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation on Jet Milling Process to Prepare Rare Earth Permanent Magnetic Powders
  • 作者:刘志颖 ; 孙威 ; 陈红升 ; 方以坤 ; 朱明刚 ; 李卫
  • 英文作者:Liu Zhiying;Sun Wei;Chen Hongsheng;Fang Yikun;Zhu Minggang;Li Wei;Functional Materials Research Institute,Central Iron and Steel Research Institute;Beijing Engineering Laboratory of Advanced Metallic Magnetic Materials and Preparation Techniques;
  • 关键词:气流磨 ; 稀土永磁磁粉 ; FLUENT软件 ; 模拟计算
  • 英文关键词:jet milling;;rare earth permanent magnetic powder;;FLUENT;;CFD simulation
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:钢铁研究总院功能材料研究所;先进金属磁性材料及制备技术北京市工程实验室;
  • 出版日期:2015-06-15
  • 出版单位:稀有金属
  • 年:2015
  • 期:v.39;No.231
  • 基金:国家科技部重点基础研究发展计划(973计划)项目(2014CB643701);; 国家自然科学基金项目(51371054,51171048);; 北京市自然科学基金项目(2142037)资助
  • 语种:中文;
  • 页:ZXJS201506005
  • 页数:6
  • CN:06
  • ISSN:11-2111/TF
  • 分类号:28-33
摘要
通过使用Solid Works建立几何模型,用ICEM CFD软件划分网格,利用FLUENT软件进行模拟计算分析。本文中的计算采用2ddp求解器,计算方法为SIMPLEC算法Segregated隐式方法,湍流模型选取标准k-ε两方程模型,压力速度耦合采用SIMPLEC算法。在二维模型的计算中,研究了高速气流粉碎研磨室内部的气流速度场情况,并探讨了不同质量分数气体对气流速度场分布的影响。实验结果表明,研磨室内部气流的最大速度出现在3个喷管中心线几何交汇点上方,磁粉将在此处碰撞最激烈,形成一个粉末破碎区域;随着研磨气体的压力增大,喷嘴处的气流速度和气流交汇处的气流速度均增大,相反地,单独改变底部喷嘴压力时,随着底部喷嘴压力的减小,底部喷嘴口处的气流速度呈减小的趋势,而在气流汇聚处,气流速度变化不大;随着气体的质量分数减小,气流速度越大,在同等气流速度需求量情况下,将需要小的气流初始压力。
        Based on the simple jet milling geometric models built by Solid Works10. 0 software,the mesh of the models was developed in ICEM CFD12. 0 by Triangular( Pave) and tet / hybrid( T-Grid) meshes,and then the models were analyzed by FLUENT software.The simulation was carried out by 2ddp version; the calculation method was Segregated Solver from the classic SIMPLEC algorithm.The standard k-ε turbulence model was chosen for modeling turbulence in this work. SIMPLEC algorithm was used to solve the pressure-velocity coupling. In the two dimensional simulation,the airflow velocity field in grinding chamber was investigated,and the effects of different kinds of gases with various mass fractions on the grinding velocity field were also studied. The result showed that the highest velocity appeared on the geometric intersection point of the three nozzles in the grinding chamber. This point was the most violent reaction area of the magnetic powder and formed the primary broken region. With the pressure of grinding gas increasing,the flow velocity of the bottom nozzle and the intersection point increased. In contrast,when the pressure of grinding gas from the bottom nozzle decreased,the velocity of the bottom nozzle decreased while the flow rate did not change much. And the flow rate increased when the mass fraction of grinding gas reduced; moreover,the reduction of the mass fraction led to the decrease of the initial pressure of the flow rate with the same demand of flow rate.
引文
[1]Benz M,Herold H,Ulfik B.Performance of a fluidized bed jet mill as a function of operating parameters[J].International Journal of Mineral Processing,1996,44-45:507.
    [2]Zheng L Y,Cui B Z,Hadjipanayis G C.Effect of different surfactants on formation and morphology of Sm Co5nanoflakes[J].Acta Materialia,2011,59(17):6772.
    [3]Luo Y,Chen Y C.Application of new technology&new equipment in Nd Fe B production part 2:hydrogen decrepitation&jet milling[J].Journal Magnetic Materials and Devices,2006,37(6):1.(罗阳,陈虞才.新技术、新设备在Nd Fe B稀土永磁体生产中的应用之二—合金的氢爆及气流粉碎[J].磁性材料及器件,2006,37(6):1.)
    [4]Wang J D.Preparation of Sintered(Nd,RE)-Fe-B Magnet by Double Main Phase Alloy Method[D].Beijing:China Iron&Steel Research Institute Group,2012.50.(王景代.双主相合金法制备烧结(Nd,RE)-Fe-B磁体研究[D].北京:钢铁研究总院,2012.50.)
    [5]Sun W,Zhu M G,Fang Y K,Pan W,Li J J,Li Y F,Li W.Microstructures and magnetic properties of Ce32.15Co49.36Cu9.84Fe9.65magnet sintering at differenttemperature[J].Rare Metals,2012,31(5):469.
    [6]Lu S,Yu D B,Li K S,Jin J L,Luo Y,Li H W.Effect of Fe content on structure rapidly quenched and annealed Sm-Fe alloys[J].Chinese Journal of Rare Metals,2013,37(5):720.(卢硕,于敦波,李扩社,靳金玲,罗阳,李红卫.Fe含量对快淬Sm Fe合金结构的影响[J].稀有金属,2013,37(5):720.)
    [7]Zhang W C.Studies on Preparation and the Princinple of Temperature Stable of High Properties 2∶17-type SmCo Permanent Magnets[D].Beijing:China Iron&Steel Research Institute Group,2011.33.(张文臣.高性能2∶17型Sm-Co永磁体制备及温度稳定性机理研究[D].北京:钢铁研究总院,2011.33.)
    [8]Gai G S.Recent development in superfine comminutioh and classification[J].China Powder Science and Technology,1999,5(1):22.(盖国胜.超细粉碎与分级技术进展[J].中国粉体技术,1999,5(1):22.)
    [9]Yang F S,Zhou A N,Ge L M.Grinding technology status and development trend in China[J].Industrial Minerals and Processing,2001,(5):1.(杨伏生,周安宁,葛岭梅.我国超细粉碎技术现状与发展趋势[J].化工矿物与加工,2001,(5):1.)
    [10]Li F S.Superfine Powder Technology[M].Beijing:Defense Industry Press,2000.162.(李凤生.超细粉体技术[M].北京:国防工业出版社,2000.162.)
    [11]Kolacz J.Process efficiency aspects for jet mill plant operation[J].Minerals Engineering,2004,17(11-12):1293.
    [12]Rajeswari M S R,Azizli K A M,Hashim S F S,Abdullah M K,Abdul M M,Abdullah M Z.CFD simulation and experimental analysis of flow dynamics and grinding performance of opposed fluisozed bed air jet mill[J].International Journal of Mineral Processing,2011,98:94.
    [13]Liu X D,Chen Z S.Numerical simulation and measurement of flow field in the chamber of a fluidized bed opposed superfine jet mill[J].The Chinese Journal of Process Engineering,2009,9(2):170.(刘雪东,陈中书.对撞式流化床超细气流粉碎机内腔流场数值模拟与测量[J].过程工程学报,2009,9(2):170.)
    [14]Chen Z S,Liu X D.Study on bottom regions in fluidized bed opposed superfine jet mill[J].Mining&Processing Equipment,2008,36(19):89.(陈中书,刘雪东.对撞式流化床超细气流粉碎机底部区域研究[J].矿山机械,2008,36(19):89.)
    [15]Chen H Y.Study and Application of the Fluidized Bed Jet Grinding and Classifying Technology[D].Chengdu:Sichuan University,2007.46.(陈海焱.流化床气流粉碎分级技术的研究与应用[D].成都:四川大学,2007.46.)
    [16]Han X Q.Research on Flow Field in Nozzle of Fluidized Bed-type Jet Mill[D].Shenyang:Northeastern University,2008.39.(韩小启.流化床式气流磨喷管流场的研究[D].沈阳:东北大学,2008.39.)
    [17]Han Z Z,Wang J,Lan X P.FLUENT Fluid Engineering Simulation and Application Examples[M].Beijing:Beijing Institute of Technology Press,2004.238.(韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.238.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700