结合组织工程支架的三维心肌细胞传感器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Three-dimensional cardiomyocyte-based biosensor with tissue engineering scaffold
  • 作者:魏鑫伟 ; 高庆 ; 苏凯麒 ; 秦臻 ; 潘宇祥 ; 贺永 ; 王平
  • 英文作者:WEI Xin-wei;GAO Qing;SU Kai-qi;QIN Zhen;PAN Yu-xiang;HE Yong;WANG Ping;Key Laboratory for Biomedical Engineering of Education Ministry,Zhejiang University;State Key Laboratory of Fluid Power and Mechatronic Systems,Zhejiang University;
  • 关键词:三维细胞传感器 ; 组织工程支架 ; 微电极阵列 ; 心肌细胞 ; 胞外场电位
  • 英文关键词:three-dimensional cell-based biosensor;;tissue engineering scaffold;;microelectrode array;;cardiomyocyte;;extracellular field potential
  • 中文刊名:ZDZC
  • 英文刊名:Journal of Zhejiang University(Engineering Science)
  • 机构:浙江大学生物医学工程教育部重点实验室;浙江大学流体动力与机电系统国家重点实验室;
  • 出版日期:2018-05-11 08:39
  • 出版单位:浙江大学学报(工学版)
  • 年:2018
  • 期:v.52;No.339
  • 基金:国家“973”重点基础研究发展规划资助项目(2015CB352101);; 国家自然科学基金重大仪器专项资助项目(31627801)
  • 语种:中文;
  • 页:ZDZC201807023
  • 页数:8
  • CN:07
  • ISSN:33-1245/T
  • 分类号:190-197
摘要
以聚乳酸(PLA)和聚己内酯(PCL)为材料,通过三维(3D)打印和静电纺丝技术,制造组织工程支架,用于培养新生大鼠心肌细胞.将培养了心肌细胞的支架耦合在微电极阵列(MEA)芯片表面构建三维细胞传感器,用于检测心肌细胞的胞外场电位(EFP)信号.实验结果表明,心肌细胞在PLA/PCL支架上附着和生长情况良好,由于兴奋-收缩耦联,能够带动纤维丝产生联合搏动.48h后,支架上心肌细胞的搏动速率趋于稳定.细胞电位检测结果表明,细胞支架与MEA芯片耦合良好,形成三维细胞传感系统,能够检测到支架内心肌细胞的胞外场电位,输出稳定、高信噪比的信号,且EFP信号幅值和发放速率与传统二维培养方法所记录到的信号相似.
        Polylactic acid(PLA)and polycaprolactone(PCL)were selected as materials to fabricate tissue engineering scaffolds by three-dimensional(3 D)printing and electrospinning,which were used to culture cardiomyocytes of neonatal rats.Then the scaffolds with cardiomyocytes were coupled with microelectrode array(MEA)to form a 3 Dcell-based biosensor,which was used to detect the extracellular field potential(EFP)of cardiomyocytes.The experimental results demonstrated that cardiomyocytes adhered and grew well in scaffolds,and could drive fibers to produce combined beating due to the excitation-contraction coupling.After 48 hours,the beating rate of cardiomyocytes in the scaffolds tended to be stable.The detecting results demonstrated that scaffolds and MEA were coupled well to be a 3 Dcell-based biosensor system,which could detect the EFP of cardiomyocytes in scaffolds with stable and high-SNR signals.The EFP amplitude and firing rate were both similar to the signals recorded from traditional two-dimensional(2 D)culturing method.
引文
[1]LANGER R,VACANTI J P.Tissue engineering[J].Science,1993,260(5110):920-926.
    [2]SACHLOS E,CZERNUSZKA J T.Making tissue engineering scaffolds work.Review:the application of solid freeform fabrication technology to the production of tissue engineering scaffolds[J].European Cells and Materials,2003,5(29):39-40.
    [3]NAM Y S,PARK T G.Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation[J].Journal of Biomedical Materials Research,1999,47(1):8-17.
    [4]INTRANUOVO F,GRISTINA R,BRUN F,et al.Plasma modification of PCL porous scaffolds fabricated by solvent-casting/particulate-leaching for tissue engineering[J].Plasma Processes and Polymers,2014,11(2):184-195.
    [5]WU X,LIU Y,LI X,et al.Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method[J].Acta Biomaterialia,2010,6(3):1167-1177.
    [6]PHAM Q P,SHARMA U,MIKOS A G.Electrospinning of polymeric nanofibers for tissue engineering applications:a review[J].Tissue Engineering,2006,12(5):1197-1211.
    [7]GARRIGUES N W,LITTLE D,SANCHEZ-ADAMS J,et al.Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering[J].Journal of Biomedical Materials Research Part A,2014,102(11):3998-4008.
    [8]JANG J H,CASTANO O,KIM H W.Electrospun materials as potential platforms for bone tissue engineering[J].Advanced Drug Delivery Reviews,2009,61(12):1065-1083.
    [9]HASAN A,MEMIC A,ANNABI N,et al.Electrospun scaffolds for tissue engineering of vascular grafts[J].Acta Biomaterialia,2014,10(1):11-25.
    [10]ZHAO G,ZHANG X,LU T J,et al.Recent advances in electrospun nanofibrous scaffolds for cardiac tissue engineering[J].Advanced Functional Materials,2015,25(36):5726-5738.
    [11]BAIGUERA S,DEL GAUDIO C,LUCATELLI E,et al.Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering[J].Biomaterials,2014,35(4):1205-1214.
    [12]SUNDARAMURTHI D,KRISHNAN U M,SETHURAMAN S.Electrospun nanofibers as scaffolds for skin tissue engineering[J].Polymer Reviews,2014,54(2):348-376.
    [13]AJALLOUEIAN F,ZEIAI S,FOSSUM M,et al.Constructs of electrospun PLGA,compressed collagen and minced urothelium for minimally manipulated autologous bladder tissue expansion[J].Biomaterials,2014,35(22):5741-5748.
    [14]SPIRA M E,HAI A.Multi-electrode array technologies for neuroscience and cardiology[J].Nature Nanotechnology,2013,8(2):83-94.
    [15]王琴,方佳如,曹端喜,等.心肌细胞传感器优化设计及其药物分析[J].浙江大学学报:工学版,2016,50(6):1214-1220.WANG QIN,FANG Jia-ru,CAO Duan-xi,et al.Optimization design and drug analysis of cardiomyocyte-based biosensor[J].Journal of Zhejiang University:Engineering Science,2016,50(6):1214-1220.
    [16]方佳如,王琴,黎洪波,等.心肌细胞电位传感器在海洋生物毒素检测中的研究[J].传感技术学报,2016,29(08):1127-1132.FANG Jia-ru,WANG Qin,LI Hong-bo,et al.Study on marine toxins detection of cardiomyocyte potential sensor[J].Journal of Transduction Technology,2016,29(08):1127-1132.
    [17]FRAMPTON J P,HYND M R,WILLIAMS J C,et al.Three-dimensional hydrogel cultures for modeling changes in tissue impedance around microfabricated neural probes[J].Journal of Neural Engineering,2007,4(4):399.
    [18]WANG L,ZHU J,DENG C,et al.An automatic and quantitative on-chip cell migration assay using self-assembled monolayers combined with real-time cellular impedance sensing[J].Lab on a Chip,2008,8(6):872-878.
    [19]TOH Y C,ZHANG C,ZHANG J,et al.A novel 3D mammalian cell perfusion-culture system in microfluidic channels[J].Lab on a Chip,2007,7(3):302-309.
    [20]GRIFFITH L G,SWARTZ M A.Capturing complex3Dtissue physiology in vitro[J].Nature reviews Molecular Cell Biology,2006,7(3):211-225.
    [21]CUKIERMAN E,PANKOV R,STEVENS D R,et al.Taking cell-matrix adhesions to the third dimension[J].Science,2001,294(5547):1708-1712.
    [22]CRUMP S S.Apparatus and method for creating threedimensional objects:U.S.Patent 5,121,329[P].1992-06-09.
    [23]SILL T J,VON RECUM H A.Electrospinning:applications in drug delivery and tissue engineering[J].Biomaterials,2008,29(13):1989-2006.
    [24]JUNG Y,PARK M S,LEE J W,et al.Cartilage regeneration with highly-elastic three-dimensionalscaffolds prepared from biodegradable poly(l-lactide-co--caprolactone)[J].Biomaterials,2008,29(35):4630-4636.
    [25]DORGAN J R,LEHERMEIER H J,PALADE L I,et al.Polylactides:properties and prospects of an environmentally benign plastic from renewable resources[C]∥Macromolecular Symposia.[S.l.]:Wiley,2001:55-66.
    [26]SDERGRD,STOLT M.Properties of lactic acid based polymers and their correlation with composition[J].Progress in Polymer Science,2002,27(6):1123-1163.
    [27]STEVENS M M,GEORGE J H.Exploring and engineering the cell surface interface[J].Science,2005,310(5751):1135-1138.
    [28]BERS D M.Cardiac excitation-contraction coupling[J].Nature,2002,415(6868):198-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700