层合陶瓷基复合材料多尺度应力—应变计算模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-scale stress-strain calculation model of laminated ceramic matrix composites
  • 作者:方光武 ; 宋迎东 ; 高希光
  • 英文作者:FANG Guangwu;SONG Yingdong;GAO Xiguang;Jiangsu Province Key Laboratory of Aerospace Power System,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics;State Key Laboratory of Mechanics and Control of Mechanics Structure,Nanjing University of Aeronautics and Astronautics;
  • 关键词:陶瓷基复合材料(CMCs) ; 多尺度模型 ; 应力—应变行为 ; 细观力学模型 ; 有限元法(FEM)
  • 英文关键词:ceramic matrix composites(CMCs);;multi-scale model;;stress-strain behavior;;micromechanical model;;finite element method(FEM)
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:南京航空航天大学能源与动力学院江苏省航空动力系统重点实验室;南京航空航天大学机械结构力学及控制国家重点实验室;
  • 出版日期:2017-06-27 09:33
  • 出版单位:航空动力学报
  • 年:2017
  • 期:v.32
  • 基金:国家自然科学基金(51575261,51675266);; 航空科学基金(2015ZB52016);; 南京航空航天大学校博士学位论文创新与创优基金(BCXJ14-02);; 江苏省高校优势学科建设工程资助项目
  • 语种:中文;
  • 页:HKDI201706015
  • 页数:6
  • CN:06
  • ISSN:11-2297/V
  • 分类号:104-109
摘要
对层合陶瓷基复合材料(CMCs)的应力-应变行为进行了研究。基于多尺度分析方法,实现了由组分性能参数到层合陶瓷基复合材料整体应力-应变的计算。采用可实现单向纤维增强陶瓷基复合材料应力-应变计算的细观力学模型,由材料的细观组分性能计算出单向板的非线性弹性性能,并将单向板的弹性性能作为层合复合材料模型的输入参数,通过有限元法计算层合陶瓷基复合材料的整体应力-应变响应。与试验数据的对比表明:采用该模型可以实现层合陶瓷基复合材料在单调拉伸载荷及拉伸加卸载条件下应力-应变曲线的预测,其中数据的最大偏离为19.61%.
        The stress-strain behavior for laminated ceramic matrix composites(CMCs)was studied.A model of calculating the stress-strain behavior for CMCs directly from constituent parameters was presented based on multi-scale method.On the basis of the micromechanical model of unidirectional fiber reinforced CMCs,the nonlinear mechanical response of unidirectional laminate can be calculated from the mechanical parameters of constituents.Subsequently,the stress-strain response of the entire composites can be obtained from the response of unidirectional laminate by finite element methods.The predicted stress-strain curves of laminated CMCs under monotonic tensile and repeated loading were acceptable if compared with the experimental results.Among these curves and their corresponding experimental results,the biggest deviation was 19.61%.
引文
[1]SOLTI J P.Modeling of progressive damage in fiber-reinforced ceramic matrix composites[D].Dayton,Ohio:Air Force Institute of Technology,1996.
    [2]张立同,成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报,2007,24(2):1-6.ZHANG Litong,CHENG Laifei.Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J].Acta Materiae Compositae Sinica,2007,24(2):1-6.
    [3]WANG M,LAIRD C.Characterization of microstructure and tensile behavior of a cross-woven C-SiC composite[J].Acta Materialia,1996,44(4):1371-1387.
    [4]何新波,杨辉,张长瑞,等.连续纤维增强陶瓷基复合材料概述[J].材料科学与工程,2002,20(2):273-278.HE Xinbo,YANG Hui,ZHANG Changrui,et al.Review of continuous fiber reinforced ceramic matrix composites[J].Materials Science and Engineering,2002,20(2):273-278.
    [5]MORSCHER G N,SINGH M,KISER J D,et al.Modeling stress-dependent matrix cracking and stress-strain behavior in 2D woven SiC fiber reinforced CVI SiC composites[J].Composites Science and Technology,2007,67(6):1009-1017.
    [6]PARDINI L C,GREGORI M L.Modeling elastic and thermal properties of 2.5Dcarbon fiber and carbon/SiC hybrid matrix composites by homogenization method[J].Journal of Aerospace Technology and Management,2010,2(2):183-194.
    [7]李龙,高希光,史剑,等.考虑孔隙的针刺C/SiC复合材料弹性参数计算[J].航空动力学报,2013,28(6):1257-1263.LI Long,GAO Xiguang,SHI Jian,et al.Calculation of needled C/SiC composite elastic parameters in consideration of the porosity[J].Journal of Aerospace Power,2013,28(6):1257-1263.
    [8]KEITH W K K.The stress-strain behaviour of a porous unidirectional ceramic matrix composite[J].Composites,1995,26(3):163-174.
    [9]许仁红,宋迎东,李龙彪,等.准静态加载下陶瓷基复合材料层合板应力-应变曲线的模拟[J].航空动力学报,2008,23(10):1854-1858.XU Renhong,SONG Yingdong,LI Longbiao,et al.Modeling behavior of cross-ply ceramic matrix composites under quasi-static loading[J].Jounal of Areospace Power,2008,23(10):1854-1858.
    [10]李潘,王波,甄文强,等.2D-SiC/SiC复合材料拉伸加卸载行为[J].复合材料学报,2014,31(3):676-682.LI Pan,WANG Bo,ZHEN Wenqiang,et al.Tensile loading/unloading stress-strain behavior of 2D SiC/SiC composites[J].Acta Materiae Compositae Sinica,2014,31(3):676-682.
    [11]陶永强,矫桂琼,王波,等.2D编织陶瓷基复合材料应力-应变行为的试验研究和模拟[J].固体力学学报,2010,31(3):258-268.TAO Yongqiang,JIAO Guiqiong,WANG Bo,et al.Experimental investigation and numerical simulation of the stress-strain behavior of 2Dweave ceramic matriz composites[J].Chinese Journal of Solid Mechanics,2010,31(3):258-268.
    [12]YANG B,MALL S.Cohesive-shear-lag model for cycling stress-strain behavior of unidirectional ceramic matrix composites[J].International Journal of Damage Mechanics,2003,12(1):45-64.
    [13]LI L.Modeling hysteresis behavior of cross-ply C/SiC ceramic matrix composites[J].Composites:Part B Engineering,2013,53:36-45.
    [14]EVANS A G,ZOK F W,MCMEEKING R M.Fatigue of ceramic matrix composites[J].Acta Metallurgica et Materialia,1995,43(3):859-875.
    [15]ZHOU Y,LU Z,YANG Z.Progressive damage analysis and strength prediction of 2Dplain weave composites[J].Composites:Part B Engineering,2013,47(3):220-229.
    [16]LU Z X,ZHOU Y,YANG Z Y,et al.Multi-scale finite element analysis of 2.5D woven fabric composites under onaxis and off-axis tension[J].Computational Materials Science,2013,79(5):485-494.
    [17]LU Z,XIA B,YANG Z.Investigation on the tensile properties of three-dimensional full five-directional braided composites[J].Computational Materials Science,2013,77(3):445-455.
    [18]方光武,高希光,宋迎东.单向纤维增强陶瓷基复合材料界面滑移规律[J].复合材料学报,2013,30(4):101-107.FANG Guangwu,GAO Xiguang,SONG Yingdong.Interface slip distribution of unidirectional fiber-reinforced ceramic matrix composites[J].Acta Materiae Compositae Sinica,2013,30(4):101-107.
    [19]GAO X G,FANG G W,SONG Y D.Hysteresis loop model of unidirectional carbon fiber-reinforced ceramic matrix composites under an arbitrary cyclic load[J].Composites:Part B Engineering,2014,56:92-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700