强激光直接辐照铝靶诱导残余应力的分布特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution Characteristic of Residual Stress in Aluminum Target Irradiated Directly by High Power Laser
  • 作者:黄志伟 ; 张兴权 ; 陈彬 ; 童靳于 ; 方光武 ; 段士伟
  • 英文作者:Huang Zhiwei;Zhang Xingquan;Chen Bin;Tong Jinyu;Fang Guangwu;Duan Shiwei;School of Mechanical Engineering, Anhui University of Technology;School of Management Science and Engineering, Anhui University of Technology;
  • 关键词:激光技术 ; 激光辐照 ; 吸收层 ; 残余应力 ; 表面形貌 ; 显微硬度
  • 英文关键词:laser technique;;laser irradiation;;absorbing layer;;residual stress;;surface morphology;;micro-hardness
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:安徽工业大学机械工程学院;安徽工业大学管理科学与工程学院;
  • 出版日期:2017-09-20 21:08
  • 出版单位:激光与光电子学进展
  • 年:2018
  • 期:v.55;No.625
  • 基金:国家自然科学基金(51675002,51175002);; 安徽省自然科学基金(1708085ME110);; 安徽工业大学研究生创新基金(2015043)
  • 语种:中文;
  • 页:JGDJ201802041
  • 页数:7
  • CN:02
  • ISSN:31-1690/TN
  • 分类号:322-328
摘要
为研究强激光直接辐照靶材诱导残余应力的分布特性,利用Nd∶YAG型激光器对7075铝合金试样在无吸收层和有吸收层的条件下分别进行了激光辐照试验,并对试验结果进行了对比。结果表明,激光直接辐照后的试样表面产生了重熔层和激光烧蚀斑点,试样表面分布的最大残余拉应力(TRS)为116.2 MPa,试样深度方向分布的残余应力为"拉应力-压应力(CRS)-拉应力",且深度方向最大残余压应力为153.6 MPa,显微硬度在深度方向的最大值为174.5 HV。有吸收层时,吸收层激光辐照处存在近似光斑大小的圆形烧蚀区域,去除吸收层后试样表面存在光滑的凹坑;试样表面分布的最大残余压应力为264.7 MPa,试样深度方向分布的残余应力为"压应力-拉应力",深度方向的最大残余压应力为258.3 MPa,显微硬度在深度方向的最大值为193.6 HV。
        In order to investigate the distribution characteristic of residual stress in targets directly irradiated by high power laser, the experiments of laser irradiation on 7075 aluminum alloy samples under the condition with or without absorbing layers are respectively conducted by means of Nd ∶ YAG laser, and the experimental results are compared. The results show that there are remelting layers and ablation spots on the sample surface after direct laser irradiation. The maximum tensile residual stress( TRS) distributed on the surface of samples reaches 116. 2 MPa, the residual stress distribution in the depth direction of the sample is TRS-compressive residual stress( CRS)-TRS, the maximum CRS in the depth direction is 153. 6 MPa, and the maximum micro-hardness in the depth direction is 174. 5 HV. When the absorbing layer is included, there is a circular ablation zone on the surface of the absorbing layer, and the smooth dent appears on the sample surface after the removal of the remaining absorbing layer. The maximum CRS distributed on the surface of samples is 264. 7 MPa, the residual stress distribution in the depth direction of the sample is CRS-TRS, the maximum CRS in the depth direction is 258. 3 MPa, and the maximum micro-hardness in the depth direction is 193. 6 HV.
引文
[1]Singh G,Grandhi R V,Stargel D S.Modeling and parameters design of a laser shock peening process[J].International Journal for Computational Methods in Engineering Science and Mechanics,2011,12(5):233-253.
    [2]Zhang X Q,Li H,Huang Z L,et al.Numerical simulation of residual stress induced in 7075 aluminum alloy by repeated high-power laser pulses[J].Chinese Journal of Lasers,2015,42(12):1203002.张兴权,李欢,黄志来,等.7075铝合金激光多点冲击诱导残余应力的数值模拟[J].中国激光,2015,42(12):1203002.
    [3]Li X C,Zhang Y K,Lu Y L,et al.Research of corrosion resistance for AZ31 magnesium alloy by laser shock processing[J].Chinese Journal of Lasers,2014,41(4):0403002.李兴成,张永康,卢雅琳,等.激光冲击AZ31镁合金抗腐蚀性能研究[J].中国激光,2014,41(4):0403002.
    [4]Luo K Y,Lin T,Dai F Z,et al.Effects of overlapping rate on the uniformities of surface profile of LY2 Al alloy during massive laser shock peening impacts[J].Surface&Coatings Technology,2015,266:49-56.
    [5]Cellard C,Retraint D,Francois M,et al.Laser shock peening of Ti-17 titanium alloy:Influence of process parameters[J].Materials Science and Engineering A,2012,532:362-372.
    [6]Zhang X Q,Zhang Y,Duan S W,et al.Numerical simulation of dynamic response of round rod subjected to laser shocking[J].Chinese Journal of Lasers,2015,42(9):0903009.张兴权,章艳,段士伟,等.圆杆在激光冲击作用下动态响应的数值模拟[J].中国激光,2015,42(9):0903009.
    [7]Zhang Q L,Wu T D,Qian Y,et al.Study on high cycle fatigue properties and laser shock processing of AZ91DT6 cast magnesium alloy[J].Chinese Journal of Lasers,2014,41(10):1003008.张青来,吴铁丹,钱阳,等.AZ91D-T6铸造镁合金激光冲击强化和高周疲劳性能研究[J].中国激光,2014,41(10):1003008.
    [8]Chai Y,Ren J,He W F,et al.Effect of laser shock processing on the fatigue property of K4030 alloy blade[J].Laser&Optoelectronics Progress,2014,51(1):011405.柴艳,任军,何卫锋,等.激光冲击强化对K4030合金叶片疲劳性能的影响[J].激光与光电子学进展,2014,51(1):011405.
    [9]Zhang X Q,Li H,Yu X L,et al.Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate[J].Materials&Design,2015,65:425-431.
    [10]Jiao Y,He W F,Luo S H,et al.Study of micro-scale laser shock processing without coating improving the high cycle fatigue performance of K24 simulated blade[J].Chinese Journal of Lasers,2015,42(10):1003002.焦阳,何卫锋,罗思海,等.无保护层激光冲击提高K24合金高周疲劳性能研究[J].中国激光,2015,42(10):1003002.
    [11]Gill A S,Telang A,Vasudeyan V K.Characteristics of surface layers formed on inconel 718 by laser shock peening with and without a protective coating[J].Journal of Materials Processing Technology,2015,225:463-472.
    [12]Sano Y,Masaki K,Gushi T,et al.Improvement in fatigue performance of friction stir welded A6061-T6aluminum alloy by laser peening without coating[J].Materials&Design,2012,36:809-814.
    [13]Wang M.Principle&technology of anti-fatigue manufacture[M].Jiangsu:Phoenix Science Press,1999:186-196.王珉.抗疲劳制造原理与技术[M].江苏:江苏凤凰科学技术出版社,1999:186-196.
    [14]Cao Y P,Feng A X,Xue W,et al.Experimental research and theoretical study of laser shock wave induced dynamic strain on 2024 aluminum alloy surface[J].Chinese Journal of Lasers,2014,41(9):0903004.曹宇鹏,冯爱新,薛伟,等.激光冲击诱导2024铝合金表面动态应变特性试验研究及理论分析[J].中国激光,2014,41(9):0903004.
    [15]Zhang X Q,Chen L S,Li S Z,et al.Investigation of the fatigue life of pre-and post-drilling hole in dog-bone specimen subjected to laser shot peening[J].Materials&Design,2015,88:106-114.
    [16]Sathyajith S,Kalainathan S,Swaroop S.Laser peening without coating on aluminum alloy Al-6061-T6 using low energy Nd∶YAG laser[J].Optics and Laser Technology,2013,45:389-394.
    [17]Zhu Y H,Fu J,Zheng C,et al.Effect of laser shock peening without absorbent coating on the mechanical properties of Zr-based bulk metallic glass[J].Optics and Laser Technology,2015,75:157-163.
    [18]Jiang Y F,Lai Y L,Zhang L,et al.Investigation of residual stress hole on a metal surface by laser shock[J].Chinese Journal of Lasers,2010,37(8):2073-2079.姜银方,来彦玲,张磊,等.激光冲击材料表面残余应力洞形成规律与分析[J].中国激光,2010,37(8):2073-2079.
    [19]Xue Y Q,Zhou X,Li Y H,et al.Validation and restraint of"residual stress hole"produced by laser shock processing[J].Laser&Optoelectronics Progress,2012,49(12):121405.薛彦庆,周鑫,李应红,等.激光冲击强化残余应力洞测试验证及抑制方法研究[J].激光与光电子学进展,2012,49(12):121405.
    [20]Oca1a J L,Morales M,Molpeceres C,et al.Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments[J].Applied Surface Science,2004,238(1/2/3/4):242-248.
    [21]Qiao H C,Zhao Y X,Zhao J B,et al.Effect of laser peening on microstructures and properties of Ti Al alloy[J].Optics and Precision Engineering,2014,22(7):1766-1773.乔红超,赵亦翔,赵吉宾,等.激光冲击强化对Ti Al合金组织和性能的影响[J].光学精密工程,2014,22(7):1766-1773.
    [22]Zhu W H,Li Z Y,Zhou G Q,et al.Effects of black paint on laser induced shock waves on surface of confined targets[J].High Power Laser and Particle Beams,1997,9(3):458-462.朱文辉,李志勇,周光泉,等.约束靶面黑漆涂层对激光冲击波的影响[J].强激光与粒子束,1997,9(3):458-462.
    [23]Ye Y X,Zhao S Y,Xiong S,et al.Experimental study on the effect of the remaining absorbing layer on laser shock processing[J].Infrared and Laser Engineering,2015,44(12):3541-3547.叶云霞,赵抒怡,熊松,等.剩余吸收层对激光冲击效果影响的实验研究[J].红外与激光工程,2015,44(12):3541-3547.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700