陶瓷基复合材料多层界面相应力传递的有限元模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Finite element simulation of stress transfer through the multilayer interphase in ceramic matrix composites
  • 作者:方光武 ; 高希光 ; 宋迎东
  • 英文作者:FANG Guangwu;GAO Xiguang;SONG Yingdong;School of Mechanical Engineering,Anhui University of Technology;Key Laboratory of Aero-engine Thermal Environment and Structure,Ministry of Industry and Information Technology,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics;Jiangsu Province Key Laboratory of Aerospace Power System,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics;
  • 关键词:陶瓷基复合材料 ; 多层界面相 ; 应力分析 ; 有限元法 ; 细观力学
  • 英文关键词:ceramic-matrix composites;;multilayer interphase;;stress analysis;;finite element method;;microme-chanics
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:安徽工业大学机械工程学院;南京航空航天大学能源与动力学院航空发动机热环境与热结构工信部重点实验室;南京航空航天大学能源与动力学院江苏省航空动力系统重点实验室;
  • 出版日期:2018-03-22 17:33
  • 出版单位:复合材料学报
  • 年:2018
  • 期:v.35
  • 基金:国家重点研发计划(2017YFB0703200);; 国家自然科学基金(51575261;51675266);; 航空科学基金(2015ZB52015);; 安徽工业大学青年教师科研基金(QZ201713)
  • 语种:中文;
  • 页:FUHE201812022
  • 页数:8
  • CN:12
  • ISSN:11-1801/TB
  • 分类号:187-194
摘要
针对陶瓷基复合材料(CMCs)多层界面相的应力传递进行了有限元模拟。采用圆柱单胞模型描述CMCs的细观结构,按相应界面相亚层的实际厚度建立明确的界面相,并假设界面相亚层之间及界面相与纤维、基体之间初始完好结合,然后赋予各界面相亚层不同的材料参数,并采用轴对称有限元法进行求解,最终建立了多层界面应力传递的模拟方法。分别对比了不同厚度热解碳(PyC)界面相、PyC和SiC两种不同成分界面相及(PyC/SiC)和(SiC/PyC)两种结构界面相的应力传递模拟结果。从剪应力沿纤维方向分布及径向分布特点可以看出,通过合理配置CMCs内部多层界面相的结构、成分和厚度,可以实现界面相应力传递及失效模式的控制和优化。
        The stress transfer through the multilayer interphase in ceramic matrix composites was simulated by finite element method.The microstructure of ceramic matrix composites(CMCs)was modeled by a cylinder unitcell,the sub-layers of interphase were created according to their real thickness within the model.The interfaces between interphase sub-layers,interphase and fibers,interphase and matrix were all assumed to be bonded perfectly.Different material properties were defined for interphase sub-layers,and the axis-symmetry finite element method was applied to analysis the stress.After all,a simulation method for stress transfer through the multilayer interphase was developed.The simulation results for stress transfer within pyolytic carbon(PyC)interphase of different thickness,interphase of different constituents(PyC and SiC),and interphase of different structure((PyC/SiC)and(SiC/PyC))were compared.It can be seen from the distribution of stress along fiber and radial direction that the stress transfer and failure mode of interphase in CMCs can be controlled and optimized by rational allocation of the structure,constituent and thickness of multilayer interphase.
引文
[1]张立同,成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报,2007,24(2):1-6.ZHANG Litong,CHENG Laifei.Discussion on strategies of sustainable development on continuous fiber reinforced ceramic matrix composites[J].Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese).
    [2] HUTCHINSON J W,JENSEN H M. Models of fiber debonding and pullout in brittle composites with friction[J].Mechanics of Materials,1990,9(2):139-163.
    [3] MEYER P,WAAS A M.Mesh-objective two-scale finite element analysis of damage and failure in ceramic matrix composites[J].Integrating Materials&Manufacturing Innovation,2015,4(1):1-18.
    [4]方光武,宋迎东,高希光.针刺C/SiC复合材料应力-应变模型及试验验证[J].复合材料学报,2016,33(4):827-832.FANG Guangwu,SONG Yingdong,GAO Xiguang.Model and test validation of stress-strain for needled C/SiC composites[J].Acta Materiae Compositae Sinica,2016,33(4):827-832(in Chinese).
    [5] BRAGINSKY M,PRZYBYLA C P.Simulation of crack propagation/deflection in ceramic matrix continuous fiber reinforced composites with weak interphase via the extended finite element method[J].Composite Structures,2016,136:538-545.
    [6] KABEL J,YANG Y,BALOOCH M,et al.Micro-mechanical evaluation of SiC-SiC composite interphase properties and debond mechanisms[J].Composites Part B:Engineering,2017,131(12):173-183.
    [7]杨福树,孙志刚,李龙彪,等.界面脱粘对正交铺设SiC/CAS复合材料基体开裂的影响[J].复合材料学报,2012,29(4):231-238.YANG Fushu,SUN Zhigang,LI Longbiao,et al.Influence of interface debonding on matrix cracking of cross-ply SiC/CAS composites[J].Acta Materiae Compositae Sinica,2012,29(4):231-238(in Chinese).
    [8]杨成鹏,矫桂琼.界面对纤维增强陶瓷基复合材料拉伸性能的影响[J].复合材料学报,2010,27(3):116-121.YANG Chengpeng,JIAO Guiqiong.Effects of interface on tensile properties of fiber reinforced ceramic matrix composites[J].Acta Materiae Compositae Sinica,2010,27(3):116-121(in Chinese).
    [9]于海蛟.多层界面制备、表征及其对SiC_f/SiC复合材料性能的影响[D].长沙:国防科学技术大学,2011.YU Haijiao.Fabrication and characterizations of multilayer interfaces and their effects on bulk properties of SiC/SiC composites[D].Changsha:National University of Defense Technology,2011(in Chinese).
    [10] NASLAIN R R.The design of the fibre-matrix interfacial zone in ceramic matrix composites[J].Composites Part A:Applied Science&Manufacturing,1998,29(9-10):1145-1155.
    [11] COONS T P,REUTENAUER J W,MERCADO A,et al.The characterization of an oxide interfacial coating for ceramic matrix composites[J].Materials Science&Engineering A,2013,573(3):190-196.
    [12] BERTRAND S,PAILLER R,LAMON J.SiC/SiC minicomposites with nanoscale multilayered fibre coatings[J].Composites Science&Technology,2001,61(3):363-367.
    [13] TAGUCHI T,NOZAWA T,IGAWA N,et al.Fabrication of advanced SiC fiber/F-CVI SiC matrix composites with SiC/C multi-layer interphase[J].Journal of Nuclear Materials,2004,329(1):572-576.
    [14] BHATT R T,CHEN Y L,MORSHER G N.Microstructure and tensile properties of BN/SiC coated Hi-Nicalon,and Sylramic SiC fiber preforms[J].Journal of Materials Science,2002,37(18):3991-3998.
    [15] YU H J,ZHOU X G,ZHANG W,et al.Mechanical properties of 3D KD-I SiC/SiC composites with engineered fibrematrix interfaces[J].Composites Science&Technology,2011,71(5):699-704.
    [16] SOLTI J P.Modeling of progressive damage in fiber-reinforced ceramic matrix composites[D].Ohio:Air Force Institute of Technology,1996.
    [17]方光武,高希光,宋迎东.单向纤维增强陶瓷基复合材料界面滑移规律[J].复合材料学报,2013,30(4):101-107.FANG Guangwu,GAO Xiguang,SONG Yingdong.Interface slip distribution of unidirectional fiber-reinforced ceramic matrix composites[J].Acta Materiae Compositae Sinica,2013,30(4):101-107(in Chinese).
    [18] GAO X,FANG G,SONG Y.Hysteresis loop model of unidirectional carbon fiber-reinforced ceramic matrix composites under an arbitrary cyclic load[J].Composites Part B:Engineering,2014,56(1):92-99.
    [19]卢子兴.复合材料界面的内聚力模型及其应用[J].固体力学学报,2015,36(s1):85-94.LU Zixing.A simple review for cohesive zone models of composite interface and their applications[J].Chinese Journal of Solid Mechanics,2015,36(s1):85-94(in Chinese).
    [20] XU Q,LU Z.An elastic-plastic cohesive zone model for metal-ceramic interfaces at finite deformations[J].International Journal of Plasticity,2013,41(2):147-164.
    [21] XU Y,YOU T.Minimizing thermal residual stresses in ceramic matrix composites by using Iterative MapReduce guided particle swarm optimization algorithm[J].Composite Structures,2013,99(5):388-396.
    [22] ISMAR H,STREICHER F.Modelling and simulation of the mechanical behavior of ceramic matrix composites as shown by the example of SiC/SiC[J].Computational Materials Science,1999,16(1-4):17-24.
    [23] BERTRAND S,FORIO P,PAILLER R,et al.Hi-nicalon/SiC minicomposites with(pyrocarbon/SiC)nnanoscale multilayered interphases[J].Journal of the American Ceramic Society,1999,82(9):2465-2473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700