High-power MoTe_2-based passively Q-switched erbium-doped fiber laser
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-power MoTe_2-based passively Q-switched erbium-doped fiber laser
  • 作者:刘孟丽 ; 刘文军 ; 闫培光 ; 方少波 ; 滕浩 ; 魏志义
  • 英文作者:Mengli Liu;Wenjun Liu;Peiguang Yan;Shaobo Fang;Hao Teng;Zhiyi Wei;State Key Laboratory of Information Photonics and Optical Communications, School of Science,Beijing University of Posts and Telecommunications;Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences;Shenzhen Key Laboratory of Laser Engineering, College of Optoelectronic Engineering, Shenzhen University;
  • 中文刊名:GXKB
  • 英文刊名:中国光学快报(英文版)
  • 机构:State Key Laboratory of Information Photonics and Optical Communications, School of Science,Beijing University of Posts and Telecommunications;Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences;Shenzhen Key Laboratory of Laser Engineering, College of Optoelectronic Engineering, Shenzhen University;
  • 出版日期:2018-02-10
  • 出版单位:Chinese Optics Letters
  • 年:2018
  • 期:v.16
  • 基金:supported by the National Natural Science Foundation of China(Grant Nos.11674036,11078022,and 61378040);; the Beijing Youth Top-notch Talent Support Program(Grant No.2017000026833ZK08);; the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications,Grant Nos.IPOC2016ZT04 and IPOC2017ZZ05)
  • 语种:英文;
  • 页:GXKB201802007
  • 页数:5
  • CN:02
  • ISSN:31-1890/O4
  • 分类号:63-67
摘要
Materials in the transition metal dichalcogenide family, including WS_2, MoS_2, WSe_2, and MoSe_2, etc., have captured a substantial amount of attention due to their remarkable nonlinearities and optoelectronic properties.Compared with WS_2 and MoS_2, the monolayered MoTe_2 owns a smaller direct bandgap of 1.1 eV. It is beneficial for the applications in broadband absorption. In this letter, using the magnetron sputtering technique, MoTe_2 is deposited on the surface of the tapered fiber to be assembled into the saturable absorber. We first implement the MoTe_2-based Q-switched fiber laser operating at the wavelength of 1559 nm. The minimum pulse duration and signal-to-noise ratio are 677 ns and 63 dB, respectively. Moreover, the output power of 25 mW is impressive compared with previous work. We believe that MoTe_2 is a promising 2D material for ultrafast photonic devices in the high-power Q-switched fiber lasers.
        Materials in the transition metal dichalcogenide family, including WS_2, MoS_2, WSe_2, and MoSe_2, etc., have captured a substantial amount of attention due to their remarkable nonlinearities and optoelectronic properties.Compared with WS_2 and MoS_2, the monolayered MoTe_2 owns a smaller direct bandgap of 1.1 eV. It is beneficial for the applications in broadband absorption. In this letter, using the magnetron sputtering technique, MoTe_2 is deposited on the surface of the tapered fiber to be assembled into the saturable absorber. We first implement the MoTe_2-based Q-switched fiber laser operating at the wavelength of 1559 nm. The minimum pulse duration and signal-to-noise ratio are 677 ns and 63 dB, respectively. Moreover, the output power of 25 mW is impressive compared with previous work. We believe that MoTe_2 is a promising 2D material for ultrafast photonic devices in the high-power Q-switched fiber lasers.
引文
1.R.Paschotta,R.Haring,E.Gini,H.Melchior,U.Keller,H.L.Offerhaus,and D.J.Richardson,Opt.Lett.24,388(1999).
    2 .O.Schmidt,J.Rothhardt,F.Roeser,S.Linke,T.Schreiber,K.Rademaker,J.Limpert,S.Ermeneux,P.Yvernault,F.Salin,and A.Tuennermann,Opt.Lett.32,1551(2007).
    3 .W.Liu,C.Yang,M.Liu,W.Yu,Y.Zhang,and M.Lei,Phys.Rev.E96,042201(2017).
    4 .Z.Sun,A.Martinez,and F.Wang,Nat.Photon.10,227(2016).
    5 .T.Hakulinen and O.G.Okhotnikov,Opt.Lett.32,2677(2007).
    6 .O.Okhotnikov,A.Grudinin,and M.Pessa,New J.Phys.6,177(2004).
    7 .Q.Bao,H.Zhang,Y.Wang,Z.Ni,Y.Yan,Z.Shen,K.Loh,and D.Tang,Adv.Funct.Mater.19,3077(2009).
    8 .H.Zhang,Q.Bao,D.Tang,L.Zhao,and K.Loh,Appl.Phys.Lett.95,141103(2009).
    9 .Q.Bao and K.Loh,ACS Nano 6,3677(2012).
    10 .W.Liu,L.Pang,H.Han,W.Tian,H.Chen,M.Lei,P.Yan,and Z.Wei,Sci.Rep.6,19997(2016).
    11 .P.Tang,X.Zhang,C.Zhao,Y.Wang,H.Zhang,D.Shen,S.Wen,D.Tang,and D.Fan,IEEE Photon.J.5,1500707(2013).
    12 .A.S.Rodin,A.Carvalho,and A.H.C.Neto,Phys.Rev.Lett.112,176801(2014).
    13 .C.Han,M.Yao,X.Bai,L.Miao,F.Zhu,D.Guan,S.Wang,C.Gao,C.Liu,D.Qian,Y.Liu,and J.Jia,Phys.Rev.B 90,085101(2014).
    14 .Y.Chen,G.Jiang,S.Chen,Z.Guo,X.Yu,C.Zhao,H.Zhang,Q.Bao,S.Wen,D.Tang,and D.Fan,Opt.Express 23,12823(2015).
    15 .X.Wang,N.Zhao,H.Liu,R.Tang,Y.Zhu,J.Xue,Z.Luo,A.Luo,and W.Xu,Chin.Opt.Lett.13,081401(2015).
    16.W.Liu,M.Liu,M.Lei,S.Fang,and Z.Wei,IEEE J.Sel.Top.Quantum Electron.24,1(2018).
    17 .A.Geim and I.Grigorieva,Nature 499,419(2013).
    18 .P.Yan,A.Liu,Y.Chen,H.Chen,S.Ruan,C.Guo,S.Chen,I.Li,H.Yang,J.Hu,and G.Cao,Opt.Mater.Express 5,479(2015).
    19 .W.Liu,L.Pang,H.Han,Z.Shen,M.Lei,H.Teng,and Z.Wei,Photon.Res.4,111(2016).
    20 .H.Chen,Y.Chen,J.Yin,X.Zhang,T.Guo,and P.Yan,Opt.Express 24,16287(2016).
    21 .F.Koppens,T.Mueller,P.Avouris,A.Ferrari,M.Vitiello,and M.Polini,Nat.Nanotechnol.9,780(2014).
    22 .W.Liu,L.Pang,H.Han,K.Bi,M.Lei,and Z.Wei,Nanoscale 9,5806(2017).
    23 .M.Liu,W.Liu,L.Pang,H.Teng,S.Fang,and Z.Wei,Opt.Commun.406,72(2018).
    24 .C.Janisch,Y.Wang,D.Ma,N.Mehta,A.L.Elías,N.Perea-López,M.Terrones,V.Crespi,and Z.Liu,Sci.Rep.4,5530(2014).
    25 .W.Liu,L.Pang,H.Han,M.Liu,M.Lei,S.Fang,H.Teng,and Z.Wei,Opt.Express 25,2950(2017).
    26 .H.Zhang,S.Lu,J.Zheng,J.Du,S.Wen,D.Tang,and K.Loh,Opt.Express 22,7249(2014).
    27 .K.Wang,J.Wang,J.Fan,M.Lotya,A.Neill,D.Fox,Y.Feng,X.Zhang,B.Jiang,and Q.Zhao,ACS Nano 7,9260(2013).
    28 .S.Wang,H.Yu,H.Zhang,A.Wang,M.Zhao,Y.Chen,L.Mei,and J.Wang,Adv.Mater.26,3538(2014).
    29 .Z.Luo,D.Wu,B.Xu,H.Xu,Z.Cai,J.Peng,J.Weng,S.Xu,C.Zhu,F.Wang,Z.Sun,and H.Zhang,Nanoscale 8,1066(2016).
    30 .D.Mao,X.She,B.Du,D.Yang,W.Zhang,K.Song,X.Cui,B.Jiang,T.Peng,and J.Zhao,Sci.Rep.6,23583(2016).
    31 .D.H.Keum,S.Cho,J.H.Kim,D.Choe,H.Sung,M.Kan,H.Kang,J.Hwang,S.W.Kim,H.Yang,K.J.Chang,and Y.H.Lee,Nat.Phys.11,482(2015).
    32 .Y.Ma,Y.Dai,M.Guo,C.Niu,J.Lu,and B.Huang,Phys.Chem.Chem.Phys.13,15546(2011).
    33 .L.Zhou,K.Xu,A.Zubair,A.D.Liao,W.Fang,F.Ouyang,Y.H.Lee,K.Ueno,R.Saito,T.Palacios,J.Kong,and M.S.Dresselhaus,J.Am.Chem.Soc.137,11892(2015).
    34 .J.Yang,T.Lu,Y.Myint,J.Pei,D.Macdonald,J.Zheng,and Y.Lu,ACS Nano 9,6603(2015).
    35 .K.Wu,B.Chen,X.Zhang,S.Zhang,C.Guo,C.Li,P.Xiao,J.Wang,L.Zhou,W.Zou,and J.Chen,Opt.Commun.406,214(2018).
    36 .C.Ruppert,O.B.Aslan,and T.F.Heinz,Nano Lett.14,6231(2014).
    37 .D.Mao,B.Du,D.Yang,S.Zhang,Y.Wang,W.Zhang,X.She,H.Cheng,H.Zeng,and J.Zhao,Small 12,1489(2016).
    38.A.Kumar and P.K.Ahluwalia,Eur.Phys.J.B 85,186(2012).
    39 .Y.Huang,Z.Luo,Y.Li,M.Zhong,B.Xu,K.Che,H.Xu,Z.Cai,J.Peng,and J.Weng,Opt.Express 22,25258(2014).
    40 .H.Chen,L.Li,S.Ruan,T.Guo,and P.Yan,Opt.Eng.55,081318(2016).
    41 .B.Chen,X.Zhang,K.Wu,H.Wang,J.Wang,and J.Chen,Opt.Express 23,26723(2015).
    42.H.Ahmad,M.Suthaskumar,Z.C.Tiu,A.Zarei,and S.W.Harun,Opt.Laser Technol.79,20(2016).
    43 .Z.Yu,Y.Song,J.Tian,Z.Dou,H.Guoyu,K.Li,H.Li,and X.Zhang,Opt.Express 22,11508(2014).
    44 .H.Mu,S.Lin,Z.Wang,S.Xiao,P.Li,Y.Chen,H.Zhang,H.Bao,S.P.Lau,and C.Pan,Adv.Opt.Mater.3,1447(2015).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700