介孔氧化硅固载Yb(OTf)_3的制备及催化葡萄糖生产乳酸
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Yb(OTf)_3 Immobilized on Mesoporous Silica and Its Catalytic Activity for Lactic Acid Production from Glucose
  • 作者:王石维 ; 王启宝
  • 英文作者:WANG Shiwei;WANG Qibao;China University of Mining & Technology(Beijing),School of Chemical &Environmental Engineering;
  • 关键词:介孔氧化硅 ; 三氟甲基磺酸镱 ; 葡萄糖 ; 乳酸
  • 英文关键词:mesoporous silica;;ytterbium triflate;;glucose;;lactic acid
  • 中文刊名:LCHG
  • 英文刊名:Biomass Chemical Engineering
  • 机构:中国矿业大学(北京)化学与环境工程学院;
  • 出版日期:2019-05-30
  • 出版单位:生物质化学工程
  • 年:2019
  • 期:v.53;No.358
  • 基金:中央级公益性科研院所基本科研业务费专项资金(Z2060302149054)
  • 语种:中文;
  • 页:LCHG201903005
  • 页数:9
  • CN:03
  • ISSN:32-1768/S
  • 分类号:19-27
摘要
采用溶剂法和焙烧法制备了SBA-15和MCM-41两类介孔氧化硅,并以此为载体制备固载型三氟甲基磺酸镱(Yb(OTf)_3)催化剂。通过小角X射线衍射(SAXD)、氮气吸附/脱附、~(29)Si固体核磁共振光谱(NMR)、透射电子显微镜(TEM)及热重分析(TG)等方法对载体及催化剂进行表征,研究其在葡萄糖制备乳酸反应中的催化性能。结果表明:溶剂法制备的氧化硅表面羟基含量比焙烧法高,负载的磺酸基团和三氟甲基磺酸镱都更多,催化活性更高;SBA-15的平均孔径比MCM-41的大3 nm左右,这使得SBA-15具有更好的传质性能以及Yb(OTf)_2-SBA-15具有更好的催化性能。以Yb(OTf)_2-SBA-15-S为催化剂,在2 MPa N_2压力、190℃下反应60 min,乳酸的收率达到42.35%。
        Two kinds of SBA-15 and MCM-41 mesoporous silica were prepared by solvent and calcination method, and they were used as the carrier of the supported ytterbium triflate(Yb(OTf)_3) catalysts. The carriers and catalysts were characterized by small angle X-ray diffraction(SAXD), nitrogen adsorption/desorption, ~(29)Si solid state nuclear magnetic resonance spectroscopy(NMR), transmission electron microscope(TEM) and thermogravimetric analysis(TG), and the catalytic performances of these catalysts in the preparation of lactic acid from glucose were evaluated. The experimental results showed that the amount of hydroxyl group of mesoporous silica by solvent method was higher than that of mesoporous silica by calcination method, so its catalytic activity was higher. The average pore size of SBA-15 was about 3 nm larger than that of MCM-41, which led to better mass transfer performance of SBA-15 and better catalytic performance of Yb(OTf)_2-SBA-15. The yield of lactic acid could reach 42.35% when it reacted at 2 MPa N_2 pressure and 190 ℃ for 60 min with Yb(OTf)_2-SBA-15-S as catalyst.
引文
[1]CHU S,MAJUMDAR A.Opportunities and challenges for a sustainable energy future[J].Nature,2012,488(7411):294.
    [2]FITZPATRICK M,CHAMPAGNE P,CUNNINGHAM M F,et al.A biorefinery processing perspective:Treatment of lignocellulosic materials for the production of value-added products[J].Bioresource Technology,2010,101(23):8915-8922.
    [3]FIELD C B,BEHRENFELD M J,RANDERSON J T,et al.Primary production of the biosphere:Integrating terrestrial and oceanic components[J].Science,1998,281(5374):237-240.
    [4]GONZLEZ-GARCIA S,GULLN B,RIVAS S,et al.Environmental performance of biomass refining into high-added value compounds[J].Journal of Cleaner Production,2016,120(1):170-180.
    [5]QI J,LX Y.Kinetics of non-catalyzed decomposition of glucose in high-temperature liquid water[J].Chinese Journal of Chemical Engineering,2008,16(6):890-894.
    [6]YANG F,FU J,MO J,et al.Synergy of Lewis acid and Brnsted acid on catalytic hydrothermal decomposition of hexose to levulinic acid[J].Energy&Fuels,2013,27(11):6973-6978.
    [7]BUI L,LUO H,GUNTHER W R,et al.Domino reaction catalyzed by zeolites with Brnsted and Lewis acid sites for the production ofγ-valerolactone from furfural[J].Angewandte Chemie International Edition,2013,52(31):8022-8025.
    [8]WANG Y L,DENG W P,WANG B J,et al.Chemical synthesis of lactic acid from cellulose catalysed by lead(II)ions in water[J].Nature Communications,2013,4:2141-2147.
    [9]MKIARVELA P,SIMAKOVA I L,SALMI T,et al.Production of lactic acid/lactates from biomass and their catalytic transformations to commodities[J].Chemical Reviews,2014,114(3):1909-1971.
    [10]CLERCP R D,DUSSELIER M,SELS B F.Heterogeneous catalysis for bio-based polyester monomers from cellulosic biomass:Advances,challenges and prospects[J].Green Chemistry,2017,19(21):5012-5040.
    [11]HAYASHI Y,SASAKI Y.Tin-catalyzed conversion of trioses to alkyl lactates in alcohol solution[J].Chemical Communications,2005,36(41):2716-2718.
    [12]KISHIDA H,JIN F M,YAN X Y.Formation of lactic acid from glycolaldehyde by alkaline hydrothermal reaction[J].Journal of Materials Science,2006,341(15):2619-2623.
    [13]YAN X Y,JIN F M,TOHJI K,et al.Hydrothermal conversion of carbohydrate biomass to lactic acid[J].AIChE Journal,2010,56(10):2727-2733.
    [14]KONG L Z,LI G M,WANG H,et al.Hydrothermal catalytic conversion of biomass for lactic acid production[J].Journal of Chemical Technology&Biotechnology,2008,83(3):383-388.
    [15]HUO Z B,FANG Y,REN D Z,et al.Selective conversion of glucose into lactic acid with transition metal Ions in diluted aqueous Na OHsolution[J].ACS Sustainable Chemistry&Engineering,2014,2(12):2765-2771.
    [16]WANG F F,LIU C L,DONG W S.Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts[J].Green Chemistry,2013,15(8):2091-2095.
    [17]KOBAYASHI S,ISHITANI H,NAGAYAMA S.Lanthanide triflate catalyzed imino Diels-Alder reactions;convenient syntheses of pyridine and quinoline derivatives[J].Synthesis,1995,1995(9):1195-1202.
    [18]JANSSEN K P F,PAUL J S,SELS B F,et al.Glyoxylase biomimics:Zeolite catalyzed conversion of trioses[J].Studies in Surface Science and Catalysis,2007,170(7):1222-1227.
    [19]LI H,REN H F,ZHAO B W,et al.Production of lactic acid from cellulose catalyzed by alumina-supported Er2O3catalysts[J].Research on Chemical Intermediates,2016,42(9):7199-7211.
    [20]CHAMBON F,RATABOUL F,PIMEL C,et al.Cellulose hydrothermal conversion promoted by heterogeneous Brnsted and Lewis acids:Remarkable efficiency of solid Lewis acids to produce lactic acid[J].Applied Catalysis B:Environmental,2011,105(112):171-181.
    [21]YANG L S,YANG X K,TIAN E,et al.Mechanistic insights into the production of methyl lactate by catalytic conversion of carbohydrates on mesoporous Zr-SBA-15[J].Journal of Catalysis,2016,333:207-216.
    [22]CLIPPEL F D,DUSSELIER M,ROMPAEY R V,et al.Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts[J].Journal of the American Chemical Society,2012,134(24):10089-10101.
    [23]LIU D J,KIM K H,SUN J,et al.Cascade production of lactic acid from universal types of sugars catalyzed by lanthanum triflate[J].Chemsuschem,2018,11:598-604.
    [24]龚慧颖,郑志锋,黄元波,等.Ti-SBA-15介孔分子筛催化制备环氧橡胶籽油的研究[J].生物质化学工程,2016,50(2):1-5.
    [25]李志雄,纳薇,王华,等.Cu-Zn-Zr/SBA-15介孔催化剂的制备及CO2加氢合成甲醇的催化性能[J].高等学校化学学报,2014,35(12):2616-2623.
    [26]RATHOD J,SHARMA P,PANDEY P,et al.Highly active recyclable SBA-15-EDTA-Pd catalyst for Mizoroki-Heck,Stille and Kumada C-Ccoupling reactions[J].Journal of Porous Materials,2017,24(4):837-846.
    [27]PATHAK A,SINGH A P.Synthesis and characterization of D-2PA-Pd(II)@SBA-15 catalyst via“click chemistry”:Highly active catalyst for Suzuki coupling reactions[J].Journal of Porous Materials,2017,24(2):327-340.
    [28]BHAGIYALAKSHMI M,YUN L J,ANURADHA R,et al.Synthesis of chloropropylamine grafted mesoporous MCM-41,MCM-48 and SBA-15 from rice husk ash:Their application to CO2,chemisorption[J].Journal of Porous Materials,2010,17(4):475-484.
    [29]ZERDAN R K,DAVIS M E.The effect of acid-base pairing on catalysis:An efficient acid-base functionalized catalyst for aldol condensation[J].Journal of Catalysis,2007,247(2):379-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700