超临界二氧化碳与二苯醚相平衡研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phase equilibrium for binary system of diphenyl ether-supercritical carbon dioxide
  • 作者:杜博文 ; 陈康 ; 丁鑫 ; 姜召 ; 方涛
  • 英文作者:DU Bowen;CHEN Kang;DING Xin;JIANG Zhao;FANG Tao;School of Chemical Engineering and Technology, Xi'an Jiaotong University;
  • 关键词:超临界二氧化碳 ; 相平衡 ; 状态方程 ; 二苯醚 ; 煤焦油
  • 英文关键词:supercritical carbon dioxide;;phase equilibria;;equation of state;;diphenyl ether;;coal tar
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:西安交通大学化学工程与技术学院;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.331
  • 基金:陕能源化工过程强化重点实验室项目(20160109-4)
  • 语种:中文;
  • 页:HGJZ201904007
  • 页数:9
  • CN:04
  • ISSN:11-1954/TQ
  • 分类号:73-81
摘要
为了解决煤焦油及其轻质化产物中二苯醚的萃取精馏分离问题以及为后续的高效分离过程提供工程数据,本文自行设计并搭建了一套流动法可视化高温高压相平衡测定装置,对二苯醚-二氧化碳体系的相平衡数据进行了测定,测定温度为313.15K、333.15K和353.15K,测定压力为8~18MPa,并使用Peng-Robinson (PR)和SoaveRedlich-Kwong(SRK)状态方程结合Quadratic、Adachi-Sugie、Mathias-Klotz-Prausnitz混合规则对的超临界二氧化碳与二苯醚相平衡数据进行了关联计算,关联结果表明PR和SRK状态方程结合AS混合规则可以获得较为准确的关联结果,而传统二次型混合规则得到的计算结果误差相对较大。此外,关联计算还表明,选择合适的混合规则后,不同状态方程的关联结果相差不大。这表明,对于低挥发性的液体与二氧化碳这类非对称混合物体系,相平衡模拟计算的关键在于选取合适的混合规则。
        In order to solve the problem of separating diphenyl ether in tar and its upgrading products,the phase equilibrium for diphenyl ether-carbon dioxide were measured at 313.15—353.15 K in the pressure ranges of 8—18 MPa, which provided fundamental information for designing separation process.The phase equilibrium data were measured by a flow-type visualization apparatus at high pressure. The measured data were correlated using the Peng-Robinson(PR) and Soave-Redlich-Kwong(SRK)equations of state(EOS) in combination with the mixing rules of Quadratic, Adachi-Sugie(AS) and Mathias-Klotz-Prausnitz(MKP). The correlation results demonstrated that PR and SRK equations of state with the AS mixing rule can obtain relatively accurate correlation results, whereas the traditional quadratic mixing rule lead to relatively large errors in the ranges investigated. In addition, the correlation also showed that after selecting the appropriate mixing rule, the selection of the EOS had little effect on the correlation result. It can be concluded that as for the asymmetric mixtures such as low volatility liquids and carbon dioxide, the key to simulate the phase equilibrium was the selection of appropriate mixing rules.
引文
[1] BRUNNER G. Supercritical process technology related to energy and future directions—An introduction[J]. Journal of Supercritical Fluids,2015, 96:11-20.
    [2] SAVAGE P E. Organic chemical reactions in supercritical water[J].Chemical Reviews, 1999, 99(2):603-621.
    [3] GOTO M, NADA T, KAWAJIRI S, et al. Decomposition of municipal sludge by supercritical water oxidation[J]. Journal of Chemical Engineering of Japan, 1997, 30(5):813-818.
    [4] GOTO M, NADA T, OGATA A, et al. Supercritical water oxidation for the destruction of municipal excess sludge and alcohol distillery wastewater of molasses[J]. Journal of Supercritical Fluids, 1998,13(1/2/3):277-282.
    [5] WAHYUDIONO, SASAKI M, GOTO M. Kinetic study for liquefaction of tar in sub-and supercritical water[J]. Polymer Degradation and Stability, 2008, 93(6):1194-1204.
    [6] WAHYUDIONO, FUJINAGA S, SASAKI M, et al. Recovery of phenol through the decomposition of tar under hydrothermal alkaline conditions[J]. Chemical Engineering&Technology, 2006, 29(7):882-889.
    [7] NICOLAOU K C, BODDY C N C, BRASE S, et al. Chemistry, biology,and medicine of the glycopeptide antibiotics[J]. Angewandte Chemie:International Edition, 1999, 38(15):2096-2152.
    [8] AZPIROZ M D G, BLANCO C G, BANCIELLA C. The use of solvents for purifying industrial naphthalene from coal tar distilled oils[J]. Fuel Processing Technology, 2008, 89(2):111-117.
    [9] YAMAMOTO Y, SATO Y, EBINA T, et al. Separation of high-purity indole from coal-tar by high-pressure crystallization[J]. Fuel, 1991, 70(4):565-566.
    [10]王汝成,王宁波,王明峰,等.中低温煤焦油中酚类化合物的柱层析分离[J].煤化工, 2013, 41(6):53-56.WANG R C, WANG N B, WANG M F, et al. Column chromatography isolation of phenolic compounds in the low temperature coal tar[J].Coal Chemical Industry, 2013, 41(6):53-56.
    [11]姜广策,张生娟,王永刚,等.低温煤焦油中特定芳烃组分的选择性分离[J].化工学报, 2015, 66(6):2131-2138.JIANG G C, ZHANG S J, WANG Y G, et al. Selective separation of aromatic hydrocarbons from low temperature coal tar[J]. CIESC Journal, 2015, 66(6):2131-2138.
    [12]张生娟,高亚男,李晓宏,等.煤焦油组分分离与分析技术研究进展[J].煤化工, 2017, 45(1):45-49.ZHANG S J, GAO Y N, LI X H, et al. Research progress of the separation and analysis technology of coal tar composition[J]. Coal Chemical Industry, 2017, 45(1):45-49.
    [13] ASIABI H, YAMINI Y, LATIFEH F, et al. Solubilities of four macrolide antibiotics in supercritical carbon dioxide and their correlations using semi-empirical models[J]. Journal of Supercritical Fluids, 2015, 104:62-69.
    [14] CELIK H T, GURU M. Extraction of oil and silybin compounds from milk thistle seeds using supercritical carbon dioxide[J]. Journal of Supercritical Fluids, 2015, 100:105-109.
    [15] MARKOVI Z, MARKOVI S, ENGELBRECHT J P, et al. Extraction of coal-tar pitch by supercritical carbon dioxide. Dependence of chemical composition of the extracts on temperature, pressure and extraction time[J]. South African Journal of Chemistry-SuidAfrikaanse Tydskrif Vir Chemie, 2000, 53:1-12.
    [16] KWIATKOWSKI J, LISICKI Z, MAJEWSKI W. An experimentalmethod for measuring solubilities of solids in supercritical fluids[J].Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, 1984, 88(9):865-869.
    [17] GOODARZNIA I, ESMAEILZADEH F. Solubility of an anthracene,phenanthrene, and carbazole mixture in supercritical carbon dioxide[J]. Journal of Chemical&Engineering Data, 2002, 47(2):333-338.
    [18] BAGHERI H, ABDUL MANAP M Y B, SOLATI Z. Response surface methodology applied to supercritical carbon dioxide extraction of Piper nigrum L. essential oil[J]. LWT—Food Science and Technology, 2014,57(1):149-155.
    [19]陈华,骆赞椿,章寿华,等.混合规则对超临界流体相平衡计算的影响——低挥发性液体体系[J].华东化工学院学报, 1993(3):280-284.CHEN H, LUO Z C, ZHANG S H, et al. Effects of mixing rules on phase equilibrium calculations for supercritical fluid—Low volatile liquid systems[J]. Journal of East China Institute of Chemical Technology, 1993(3):280-284.
    [20] LUCAS M A, BORGES G R, DA ROCHA I C C, et al. Use of real crude oil fractions to describe the high pressure phase behavior of crude oil in carbon dioxide[J]. Journal of Supercritical Fluids, 2016,118:140-147.
    [21] AUGELLETTI R, FRATTARI S, GIRONI F, et al. Phase equilibria and thermodynamic modeling of systems CO2-bergamot oil and CO2-linalyl acetate[J]. Journal of Supercritical Fluids, 2016, 116:1-9.
    [22] PENG D, ROBINSON D B. A new two-constant equation of state[J].Industrial&Engineering Chemistry Fundamentals, 1976, 15(1):59-64.
    [23] VALDERRAMA J O. The state of the cubic equations of state[J].Industrial&Engineering Chemistry Research, 2003, 42(8):1603-1618.
    [24] COSTA G M N, CARDOSO S G, SOARES R O, et al. Modeling high pressure vapor-liquid equilibrium of ternary systems containing supercritical CO2and mixed organic solvents using Peng-Robinson equation of state[J]. Journal of Supercritical Fluids, 2014, 93:82-90.
    [25] HIGASHI H, FURUYA T, ISHIDAO T, et al. An exponent-type mixing rule for energy parameters[J]. Journal of Chemical Engineering of Japan, 1994, 27(5):677-679.
    [26] ADACHI Y, SUGIE H. A new mixing rule modified conventional mixing rule[J]. Fluid Phase Equilibria, 1986, 28(2):103-118.
    [27] FANG T, GOTO M, SASAKI M, et al. Phase equilibria for the ternary system methyl oleate+tocopherol+supercritical CO2[J]. Journal of Chemical&Engineering Data, 2005, 50(2):390-397.
    [28] MEIER U, GROSS F, TREPP C. High pressure phase equilibrium studies for the carbon dioxide/α-tocopherol(vitamin E)system[J].Fluid Phase Equilibria, 1994, 92:289-302.
    [29] CHUNG S T, SHING K S. Multiphase behavior of binary and ternary systems of heavy aromatic hydrocarbons with supercritical carbon dioxide:Part I. Experimental results[J]. Fluid Phase Equilibria, 1992,81:321-341.
    [30]陈华,骆赞椿,章寿华,等.超临界二氧化碳萃取低挥发性液体混合物的相平衡[J].高校化学工程学报, 1994(1):46-54.CHEN H, LUO Z C, ZHANG S H, et al. Extraction of low volatility liquid mixtures with supercritical carbon dioxide[J]. Journal of Chemical Engineering of Chinese Universities, 1994(1):46-54.
    [31] LATSKY C, KOUAKOU A C, SCHWARZ C E. Phase equilibria of CO2with components in the light naphtha cut of tyre derived oil[J].Journal of Supercritical Fluids, 2018, 131:58-65.
    [32] KORDIKOWSKI A, SCHNEIDER G M. Fluid phase equilibria of binary and ternary mixtures of supercritical carbon dioxide with lowvolatility organic substances up to 100 MPa and 393 K[J]. Fluid Phase Equilibria, 1993, 90(1):149-162.
    [33] PENG D Y, ROBINSON D B. A new two-constant equation of state[J].Industrial and Engineering Chemistry, Fundamentals, 1976, 15(1):59-64.
    [34] ADACHI Y, SUGIE H. A new mixing rule—Modified conventional mixing rule[J]. Fluid Phase Equilibria, 1986, 28(2):103-118.
    [35] MATHIAS P M, KLOTZ H C, PRAUSNITZ J M. Equation-of-State mixing rules for multicomponent mixtures:the problem of invariance[J]. Fluid Phase Equilibria, 1991, 67:31-44.
    [36] WEBER W, PETKOV S, BRUNNER G. Vapour-liquid-equilibria and calculations using the Redlich-Kwong-Aspen-equation of state for tristearin, tripalmitin, and triolein in CO2and propane[J]. Fluid Phase Equilibria, 1999, 158/159/160:695-706.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700